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Abstract

Health and reproductive traits are increasingly important in cattle breeding programms
all around the world. In contrast to productivity traits, health and reproductive traits are
often measured on a nominal or ordinal scale which makes classical breeding value estima-
tion via linear mixed effects models (LMMs) inappropriate. Despite extensive litherature,
application of generalized linear mixed effects models (GLMMSs) and threshold models
in practical breeding value estimation remains challenging due to limited availability of
software implementation for this specific purpose. In this study we present available soft-
ware packages, show their weaknesses and implement improvements. The implementations
were tested on simulated data sets and compared with respect to computation time and
accuracy of the estimated breeding values. The best implementations were applied to real-
world data sets of some major Swiss cattle populations. Traits of interest were multiple
birth, early-life calf survival and carcass confirmation scores. GLMMSs and threshold mod-
els clearly improved the prediction of breeding values compared to LMMs when applied to
simulated binary and ordinal traits. Bayesian implementations performed relatively slow
for small data sets but returned trustworthy standard errors of the estimated breeding
value by accounting for the uncertainty of variance component estimation. The improve-
ments also came at a higher computational cost, however, the cost was largely reduced
by assuming known variance components. A similar strategy was successfully applied to
the much larger real world data sets by separately estimating variance components and
animal breeding values. This study shows that GLMMs and threshold models can and
should be applied for non-normal traits in order to improve the properties of estimated
breeding value and obtain unbiased heritability estimates which allow for well-informed
constructions of selection indices.
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Notation

Throughout this thesis, R packages and objects are written in gray boxes with typewriter
font. Functions are followed by parenthesis, for example, 1lmer () . Random variables are
denoted as upper-case letter (e.g. G) and the corresponding lower-case letter denotes a
particular value of the random variable (e.g. g). Vectors are indicated by bold letters (e.g.
b), matrices by uppercase letters (e.g. A). Special symbols include I,, which represents
the identity matrix of dimension n, 0 which is a vector of appropriate dimensions with
all elements equal to zero and ® which represents the Kronecker product. Results are
followed by a proof of the result, which ends with an open square (OJ). A filled square (H)
denotes the end of an example.

The following list includes all abbreviations

BLUP Best linear unbiased prediction

EDM Exponential distribution model

GLM Generalized linear model

GLMM Generalized linear mixed effects model
IBD Identical by descent

IBS Identical by state

INLA Integrated nested Laplace approximation
LMM Linear mixed effects model

MCMC Markov chain Monte Carlo

NLMM Nonlinear mixed effects model

PIRLS Penalized iteratively reweighted least squares
PQL Penalized quasi-likelihood approximation

ix
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Chapter 1

Introduction

In the second half of the 20th century, livestock breeding adopted modern statistical ap-
proaches in order to select animals for breeding based on phenotypic observations. In
a series of papers, Henderson developed the theoretical foundations of mixed models in
animal breeding and provided a methodology to estimate best linear unbiased predictions
(BLUPs) of the random effects (summarized in Henderson 1982). He also provided ef-
ficient methods to include the pedigree derived correlation between related animals into
the model. The methodology was quickly implemented in breeding programs all over the
world and lead to a tremendous increase in response to selection (Hill 2014). With in-
creasing availability of genomic data, Meuwissen, Hayes, and Goddard (2001) presented
an adapted mixed model methodology which directly makes use of genetic information.
Selecting animals based on genetic breeding values shortens the generation interval and
is expected to at least double the rate of genetic gain in the dairy industry (Hayes et
al. 2009). Both methodologies, pedigree based and genomic based, primarily target the
evaluation of quantitative traits with a normal distribution conditional on the predictor
variables.

Traditionally, livestock breeding strongly focused on quantitative productivity traits as for
example milk yield in dairy cattle or daily liveweight gains in beef cattle. However, other
traits, often referred to as secondary or nonproduction traits, are also of great economic
importance and have gained attention in recent years. Specifically, health and reproductive
fitness directly affect dairy production profitability and have an effect on animal welfare at
the same time. Years of breeding on productivity traits led to the emergence of production
diseases such as health and fertility problems (Miglior et al. 2017). Breeding focus has
gradually shifted and nowadays includes traits that are associated with robustness and
sustainability (O’Neill, Swain, and Kadarmideen 2010). Important secondary traits in
dairy cattle include mastitis resistance, resistance to lameness, fertility, calving ease and
longevity (Kadarmideen, Thompson, and Simm 2000, Neuenschwander et al. 2005). These
traits are often discrete or measured on a nominal or ordinal scale. For example, clinical
mastitis can be recorded as a binary variable, measuring the presence or absence of the
disease or as a count variable, measuring the number of mastitis cases in a lactation period
(Vazquez, Gianola, et al. 2009).

Binary or count variables are clearly not conditionally normal and the classical methods to
estimate breeding values do not apply. Fortunately, generalized linear mixed effects models
(GLMMs) provide a well-researched generalization of mixed models which can be used to
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extend the classical methods to allow for a wide variety of trait distributions, including the
binomial distribution for binary data or the Poisson distribution for count data. Threshold
models further extend the scope to ordinal response variables by assuming a continuous
underlying variable called liability and thresholds which separate the liability into regions
of different trait expression.

A variety of studies already applied GLMMs and threshold models in genetic evaluations.
A review on the early development of GLMMs in cattle breeding can be found in Tem-
pelman (1998). GLMMs were used to model binary data such as health traits (Yin et al.
2014) and count data such as mastitis cases (Rodrigues-Motta et al. 2007, Vazquez, Perez-
Cabal, et al. 2012). First theoretical considerations of the threshold model are presented
in Gianola and Foulley (1983). Threshold models have successfully been applied to cate-
gorical data such as fertility (Kadarmideen, Thompson, and Simm 2000), multiple birth
(Van Tassell, Van Vleck, and Gregory 1998) or number of services to conception (Chang
et al. 2006).

Despite above mentioned examples, in practice, breeding organizations often model non-
normal response variables with simple linear mixed effects models (LMMs). The theoreti-
cal foundation for the genetic evaluation of non-normal traits are well understood but the
practical application of theses models is still hampered by the lack of software implemen-
tations which are easy to use, computationally efficient and specifically designed to include
the complex correlation structure between animals. On the other hand, software solutions
for LMMs are readily available, familiar and well understood. Several studies showed that
evaluating binary data with LMMs might still result in a reasonable ranking of animals
(Negussie, Strandén, and Méntysaari 2008, Vazquez, Perez-Cabal, et al. 2012). Still, using
LMDMs on non-normal data violates the basic assumptions of normally distributed residual
errors, such that inferential results based on LMM are invalid. Predictions will likely not
persevere the support of the response especially for discrete response variables. A bounded
support often also implies a conditional variance which depends on the conditional mean
and a complex relationship between the linear predictor and the conditional mean. Both
are not natively supported by LMMs.

Qualitas, the company responsible for breeding value estimation of the major Swiss cattle
breeds, faces the same challenges in the process of estimating breeding values for two
binary and one categorical traits:

o Multiple birth poses a health risk for calf and dam. Qualitas investigates the pos-
sibility to decrease multiple birth rate in the Swiss Braunvieh population which is
mainly used for milk production.

o Farly-life calf survival is an important health trait and covers a life period which is
currently neglected in most Swiss cattle breeding programs. An increase in early-life
calf survival would have positive economic and animal welfare consequences.

e (Carcass confirmation describes the visual classification of carcasses into seven quality
classes. The trait has a major influence on the value of animals for slaughter and is
an important selection criterion in beef cattle.

Qualitas modeled the traits with classical LMMs in order to obtain breeding values for
all animals. The fitted models are characterized by relatively low explanatory power and
large standard errors of the predicted breeding values. The bad performance of classical
LMMs motivated Qualitas to evaluate the same traits with more appropriate models and



possibly include GLMMs and threshold models in their routine breeding value estimation.

The aim of this study is to assess GLMMs and threshold models for genetic evaluations
of traits with non-normal conditional distribution. To this end we start with a detailed
theoretical description of the models and describe their estimation from a likelihood and
a Bayesian perspective (Chapter 2). Current implementations of GLMMs and threshold
models for genetic evaluations in R (R Core Team 2020) were analyzed and improved
(Chapter 3). Different implementations were tested on simulated data sets (Chapter 4)
and finally applied on the Qualitas data sets (Chapter 5). The thesis concludes with a
discussion of the results and implications for future breeding value estimation at Qualitas
(Chapter 6 and 7).
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Chapter 2

Theory

2.1 Quantitative Genetics

2.1.1 Decomposing the Phenotype

Animals show variation of morphological, physiological and behavioral properties between
species and individuals. Those properties often referred to as traits mainly determine
whether a certain species or a certain individual is considered for production in an agri-
cultural setting. The collection of all traits is called phenotype. The phenotype is to some
degree pre-determined by genetic factors which are summarized by the term genotype.
The remaining variability in the phenotype comes from environmental factors. Measur-
ing a single trait in metric units results in a value called phenotypic value P. Following
the influencing factors of the phenotype, we can decompose the phenotypic value into a
genotypic value G and environmental deviation F. This is usually summarized by the
identity

P=G+FE.

The genotypic value is the average phenotypic value of an animal with a certain genotype
if it would have been observed in different environments. The deviation from that average
value is caused by the environmental deviation. The equation above, as it is stated in
many textbooks (e.g. Falconer and Mackay 1996), suggests a pure additive effect of the
genotype and the environment on the phenotype. This assumption does usually not hold
in practice where we observe genotype-by-environment interaction.

Further decomposing G requires a closer look on how genetic information is inherited.
Unlike crops, livestock is usually diploid meaning that there are always pairs of homologous
chromosomes containing corresponding loci. Each locus has therefore two possibly different
forms called alleles. Different alleles may have different effects on the phenotypic value.

A common statistical approach to estimate the effect of one quantity on another is via
linear regression. We define the allele content V; as the number of copies of a particular
allele 7 in the genome of an animal. In case of diploid organisms N; € {0,1,2}. The
regression of the penotypic value on the allele content can be written as



6 Theory

dominance

epistatic

Homologous chromosomes

-

Figure 2.1: Additive, dominance and epistatic effect of alleles.

n
G:MG+ZaiNi+5 (2.1)
=1

were g is the mean genotypic value in the population, n is the number of alleles, «; is
the slope of predictor N; and § is the residual error. The slope «; is commonly referred
to as additive genetic effect of allele ¢. In the case of random mating, it can be shown
that the additive genetic effect of allele ¢ is equal to the difference in the average genotypic
value between animals containing allele 7 and the population (e.g. Lynch and Walsh 1998).
Formally,

o =Gi— pa

where G is the mean genotypic value of all animals containing allele 7. The additive effect
of allele ¢ can therefore be seen as the average effect of replacing a random allele by allele
1. The effects depends on allele frequencies, the population structure, the environment
and many more factors. As an example, assume a population where the allele of interest
is already fixed. Replacing an allele by the same allele has no effect on the phenotype.
Therefore the additive effect would be zero even though the allele might have a strong
causal relationship with the phenotype. The additive effect might be largely different in
another population with different allele frequencies.

Because each locus has two alleles the effect of replacing the allele on only one chromosome
will likely depend on the allele on the second chromosome. This kind of interaction within
one locus is called dominance. Additionally the effect might be influenced by other loci.
The interaction between different loci is called epistasis (Figure 2.1). Dominance and
epistasis entirely explain the remaining error term § in Equation (2.1). Therefore, we can
further decompose the phenotypic value as
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P=G +E
—pug+B+D+I+E (2.2)

where B = Y7 | «; is the sum of each alleles additive effects, D is the dominance deviation,
I is the epistatic deviation and F is the environmental deviation. In a similar way we can
also decompose the variance of the phenotype. As already shown by Fisher (1918), there
is no covariance between B and D. From today’s perspective this can easily be verified by
viewing the interaction deviations as residual error of regression (2.1). Further assuming
random mating, independent segregation of loci and no covariance between genotypic and
environmental variance, we can decompose the phenotypic variance as

2 2 2 2 2
UP:UB+UD+UI+UE

2.1.2 Breeding Value

Only one of the two alleles in diploid species is passed to the gamete which determines the
offspring’s genotype. In randomly mating populations, it is combined randomly with a
second allele at the same locus and further alleles at different loci. All interaction effects as
dominance deviation and epistatic deviation will therefore change during recombination.
Only the additive effect of each allele will be conserved when passed from parents to
offspring. For a breeder with the goal to improve the phenotype over several generations,
it is therefore only B, the sum of all additive effects, which determines the potential of an
animal as parent. For this reason B is called the breeding value.

In many textbooks (e.g. Willam and Simianer 2017) the breeding value is defined as twice
the expected deviation of its offspring’s mean phenotypic value from the population mean.
What could be the reason for defining it based on related animals rather than directly based
on the sum of allele effects? To answer this question we have to consider that estimating
components of decomposition (2.2) is impossible having only observed a single animal in
a single environment. Only by using phenotypic information of related animals, we can
reliably distinguish between additive effects and deviations due to interaction within or
between loci as well as the environment. A crucial information for estimating the additive
effects is the expected phenotypic covariance due to the similar additive effects of related
animals.

2.1.3 Covariance between Related Animals

Assume that for each animal the alleles are sampled from the pool of alleles in the popula-
tion. Some animals will by chance sample the same allele at one locus. We call the allele of
those animals to be identical by state (IBS). Animals with alleles IBS also experience the
same effect of these alleles on the phenotype. Offsprings will not sample randomly from
the pool of alleles in the population but from their parents. Some of the alleles which are
identical between parent and offspring will not only be IBS but also identical by descent
(IBD). IBD alleles are identical not because by chance two animals sampled the same allele
from the population but because they were directly passed from parent to progeny. The
correlation in phenotypic value between relatives is directly related to alleles which are
IBD.
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In the previous section we have seen that only the additive genetic effect is passed from
parents to their offsprings. By combining all remaining terms we rewrite Equation (2.2)
as

P=uc+B+e

where e = D + I + FE containing all effects which are not passed from parents to their
offsprings. It follows that the correlation between the phenotypic value of a parent p and
an offspring o is

Cov (P,, P,) = Cov (By, + €p, B, + €,)
= Cov (By, B,) + Cov (B, €,) + Cov (ep, By) + Cov (ep, €,) .

=0

Assuming random mating, independent segregation of loci and no covariance between
genotypic and environmental variance all covariances containing an e term become zero.
Usually, non of these assumption is fulfilled in an animal breeding setting. Still, it is
common to make these assumptions in order to get a parsimonious model with not too
many parameters.

The breeding value B was defined as deviation from population mean pug. The expected
value of B is zero and we can further simplify

Cov (B,, B,) = E[B,B,] — B[B,| E[B,]
—_——
=0

= E[B,B.].

Writing out the breeding values as sums of additive effects of single loci

E [BpBO] =K [(Ozpn + Qp12 + Qpa1 + Qpa2 + . .. )(Oéoll + Qo12 + Q21 + Qp22 + ... )]

= E[api10011] + E [opr1ao12] + E [api200611] + E [op120i612]

Terms within first loci

+ E [apo10021]) + ...+ o (2.3)

within further loci

within second loci

+ E [apnaogl] “+ ...

across loci
where o, is the additive effect of allele at loci j on chromosome £ in animal ¢. All cross

terms where j # j' cancel as we assume independent segregation of loci and the expected
value of « is zero, therefore

E [apjkcojre] = B [apir] B (o] = 0. (2.4)
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We define the coefficient of coancestry ©,, as the probability of an allele to be IBD in
animal p and o. For terms where j = j' we can write

E |a?. with probability ©,,
E [apjrojw] = { [ pjk} P (2.5)

E [apjk] E [Oéoj/k/} =0 with probability 1 — ©,,.

Based on our assumptions, the variance of the breeding value can be separated into the
contributions of the individual loci

02 = Var (B) = Var (o117 + 12 + o1 +...)
= Var (a;11) + Var (a;12) + Var (a;21) + . ..
=E [0%211] + E [%212] +E [%221} t.
=2 (B o] + E [ady] + .. (2.6)

Inserting (2.4) and (2.5) into (2.3) and using (2.6) leads to

Cov (By, By) = E [B,B,] = 40, |afy,| + 40,0 [ady] + ..

=40y, (B k] + B [ady] +...)

= 20,,0% (2.7)
which is the covariance between any two related animals. The coefficient of coancestry ©
can be directly calculated from the pedigree for any pair of animals. The calculation be-
comes increasingly complex for larger pedigrees with inbreeding. A detailed derivation can

be found in Lynch and Walsh (1998) Chapter 7 or Falconer and Mackay (1996) Chapter 5.
The basic idea of the calculation includes the following steps

1. Represent the pedigree by a graph

2. Follow the paths which connect the animals via a single common ancestor, as well
as paths which connect those common ancestors

3. Calculate the probability for inheriting a certain allele along each path
4. Sum up all probabilities

A second possibility is to compute recursively all coefficients in the pedigree starting from
the oldest animals. The coefficient between two animals can be directly calculated from
the coefficients of their parents.

2.2 Basic Model

2.2.1 Breeding Values in a Linear Model

Our goal is to set up a model which allows predicting B. Following Equation (2.2), the

phenotypic value can be decomposed into different sources. The environmental variance 0%
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can make up for a large proportion of the total phenotypic variance 0123 of some traits. Part
of cr% can be explained by adding environmental explanatory variables to the model and
estimating their fixed effects. All remaining random terms except for B can be combined
to the residual error

P=pueg+B+D+1+F
=pc + Eix +B + D + I + Eranq -
—_— —_—

fixed effects random residuals

Turning to vector matrix notation, we can write

Y = XB+ZB+¢ (2.8)

where Y is the vector of random phenotypic values, X3 contains the model matrix and
vector of fixed effects, Z is the model matrix relating the breeding value of an animal to
the observations of the same animal, B is the random vector of breeding values and € is
the vector of random errors. Note that Equation (2.8) contains two random terms on the
right hand side. Let’s first have a closer look at the vector of breeding values. We have
seen that breeding values are defined as deviation from the population mean, therefore
E [B] = 0. Using Equation (2.7), the variance covariance matrix is given by

O11 ... 61,
Var(B)=2| : .. 1 |of=Adt
Op1 ... Opp

The matrix A contains twice the coefficient of coancestry between each animal. Its use in
the numerator of the formula to calculate classical relationships led to the name additive
numerator relationship matriz. Figure 2.2 shows a small example of a pedigree with the
corresponding additive numerator relationship matrix. The breeding value is the sum of
many small allele effects, therefore it might be justified to assume it follows a normal
distribution. The second random term in Equation (2.8) is the vector of residual errors
which is also assumed to be the result of many small effects. Because it contains deviations
from the population mean and all components are assumed independent even between
related animals we assume

e~ N, (0, 1,0%). (2.9)

Using all this information we can set up the final model as

(Y | B=b)~N, (XB+2b,1,0%)

B ~ N, (3, 407) .

which is a linear mixed effect model with an unusually complex correlation structure in
the random effect vector B.
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O sire O dam

1.000

0.000 1.000

0.500 0.500 1.000

0.500 0.500 0.500 1.000

0.000 0.000 0.000 0.000 1.000

0.250 0.750 0.500 0.750 0.000 1.250
0.125 0.375 0.250 0.375 0.500 0.625 1.000

Figure 2.2: Example of pedigree with corresponding additive numerator relationship ma-
trix A. The graph on the left is a pedigree chart where parents (top) are connected to
their offspring (bottom). The node symbol represents the sex of each animal. The dashed
line connects symbols which represent the same animal. The matrix on the right shows
the lower triangle of the symmetric additive numerator relationship matrix A. Animal 2
is mother and grandmother for animal 6, which is therefore highly inbreed (usually such
strong inbreeding is prevented in practice). The probability for IBD allels between parent
and progeny of inbreed animals is > 0.25, leading to offdiagonal elements which are > 0.5.
Also the probability of sampling IBD alleles from the same animal are > 0.5 leading to
diagonal elments which are > 1.

2.2.2 Animal Model and Sire Model

In the way we derived the model in Chapter 2.2.1, B would contain the breeding values
of all animals in the pedigree. In some breeding populations this might be several million
animals which makes the model difficult to fit in reasonable time. One way of simplifying
the model is to associate the random effect with a parent instead of the animal. The
number of sires in a cattle breeding pedigree is usually much smaller compared to number
of animals. The dimension of B can be drastically reduced if the random effect is associated
with the sire. However, this simplification comes at a cost. First, only breeding values of
the sires can be predicted. Dams can therefore no longer be selected based on a breeding
value. Another disadvantage is that the variance covariance matrix of (Y | B = b) will no
longer be truly diagonal, because we only account for half of the additive effect. With a
diagonal variance covariance matrix, full-sibs are assumed to have the same correlation as
halve-sibs from the same sire, an assumption which is obviously not true. Still, assuming
a diagonal variance covariance matrix might result reasonable predictions of B.

The model where each animal has a breeding value is commonly referred to as animal
model (Henderson 1984). In contrary, the model were the random effects are associated
with the sires is referred to as sire model. In the following we show a small numerical
example of an animal and a sire model.

Ezample 2.1. We observed a trait y in 3 animals (Table 2.1). The predictor Lact is assumed
to have a fixed effect on the response variable. The pedigree is the same as in Figure 2.2.

Our goal is to set up all model components for the animal model and the sire model. The
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Table 2.1: Example data set
Animal Sire Herd Lact y

3 1 1 1 5.3
3 1 1 2 5.1
6 4 1 1 3.4
6 4 1 2 3.1
7 ) 2 1 7.2
7 5) 2 2 7.0

y vector and the fixed terms are the same in both models

5.3 1 1 0
5.1 1 01 u
3.4 110 ¢
Y= 131 XB=11 ¢ 1 gl
7.2 110 2
7.0 1 01
with the side constrain $; = —f2. The random component is different between the two
models. For the animal model we have
001000 21
00100 0],
0000T1o0]}].?
2=10 000 1 0 24
000001 b5
000001 6
b7

The A matrix is the same as in Figure 2.2. Including random effect by, bs and b4 into the
model may seem unnecessary because they are not connected to any observation. Including
them still makes sense in this specific case. It appears that by, by and by can be predicted
because they are correlated with random effects for which we have observations via the
additive numerator relationship matrix. This makes it possible to predict breeding values
for animals without any observations. However, only breeding values of animals which are
related to animals with observations should be included in vector b.

For the sire model the same components would be

1 00

ool L 05 o
Zb= $9 A=105 1 0

010

00 1 S3 0 0 1

0 0 1

In real world data sets, the dimension of A is reduced drastically by using a sire model,
which in turn speeds up the estimation of the model.
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2.2.3 General Form

Breeding values were the only random term besides the residual term in the previous
chapters. In practice there are usually additional environmental factors which can be
considered as random. Therefore, we have to extend the random part which should no
longer be limited to breeding values. Additionally, the effect of alleles often interacts
with environmental variables. For example, it is well known that some alleles which are
associated with higher milk productivity in optimal environments, have a negative effect
on milk yield in unfavorable environments (O’Neill, Swain, and Kadarmideen 2010). Such
interaction between a predictor variable and a random factor is usually called random
regression.

Model (2.10) can easily be extended to allow for additional random factors and random
regression. A more general correlation structure in the random effects can be introduced
by rewriting the model as

(Y | B =b) ~ N, (XB+ Zb,1,0°)

2.11

B~ N, (0,3). (20
The extensions to additional random factors and random regression will only affect the
structure of three model components: Z, B and Y. However, before we define the structure
of these components we need to introduce some notation. We use the same notation as
in Bates, Méchler, et al. (2015). New variables and subscripts are explained in Table 2.2
and 2.3. Using R mixed model formula notation, we allow for models of the form

y ~ FEexpr + (REexpl | factorl) + (REexpr2 | factor2) + ....

On the right hand side of the modeling equation we have three terms, FEexpr which con-
tains all information to build the fixed effect model matrix X, as well as two random effect
terms. The random effect terms include an expression and a grouping factor separated by
a vertical bar. The expressions contain the information to build the raw random effects
model matrix X; whereas the factor contains the information for the indicator matrix J;.
Random effects of different terms are assumed to be independent. For detailed explanation
about R mixed model formula notation see Bates, Méchler, et al. (2015).

We define the order of random effects in the following way

B

B, Bip,
B=|: with  B; = :

B, Bi1

Blipi

The Z matrix can be calculated in the same way as described in Bates, Méchler, et al.
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Table 2.2: Dimensions of linear mixed models (from Bates, Machler, et al. 2015). The

subscript ¢ = 1,..., k denotes a specific random effects term.
Symbol Description
n Length of the response vector, Y.
D Number of columns of the fixed effects model matrix, X.
q= Zf Qi Number of columns of the random effects model matrix, Z.
i Number of columns of the raw model matrix, Xj.
l; Number of levels of the grouping factor indices.
q; = pil; Number of columns of the term-wise model matrix, Z;.
k Number of random effects terms.
m; = (P ) Number of covariance parameters for term i.
m = Zf’ m; Total number of covariance parameters.

Table 2.3: Symbols used to describe the structure of the random effects model (adapted
from Bates, Méchler, et al. 2015). The subscript ¢ = 1,...,k moves along random effect
terms, j = 1,...,n along observations, g = 1,...,p; along columns of raw model matrix
and h =1,...,l; along levels of the grouping factor.

Symbol Size

Description

piliX1
1x1
n X pi
nxli
pix1
li><1
n

nXxXdg;
m

Di X Pi
qi X q;
Di X pi
lixli
lixli

<.

.

SHE

SN

=M ES NS

<.

t~
>

Vector of random effects of ith term
random effect of hth level and gth column of raw model matrix
Raw random effects model matrix.
Indicator matrix of grouping factor indices.
Column vector containing jth row of X;.
Column vector containing jth row of J;.
Vector of grouping factor indices.
Term-wise random effects model matrix.
Covariance parameters.

Lower triangular template matrix.
Term-wise relative covariance factor.
Term-wise covariance matrix.

Term-wise numerator relationship matrix.
Term-wise Cholesky factor.
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(2015)

Jue Xy Jpe X ... Ji,® Xy,
ZT = | J21 @ X1 Joa ® X ... Jo2p @ Xy | (2.12)

For ¥ we need some adaptations to allow for correlation across animals or sires. The
general structure can be expressed with

A1 @3
> = = diag ({4 © Wi}, ).
AL ® X,
Ezxample 2.2. We want to set up a model of the form y ~ (1|Herd) + (1+Lact|Sire)

using the same data set as in Table 2.1. The fixed effects can be encoded with X = 1 and
B = pup. The vector of random effects is defined by

h1
ho
S1i
B = Bherd _ S11
Bsire S92
521
53i
531
Using Equation (2.12) we can calculate matrix Z
1 1 0 1
1 1 0 1
. 1 1 0 1
T =11 0 Xi=1
2 01 1
2 01 1
1 1 00 1 1
1 1 0 0 1 2
. 2 010 1 1
272 =101 0 X2=11
3 0 0 1 1 1
3 0 01 1 2
10110000
1 01 2 000 O0
7 10001100
|1t 0001200
01 0000711
01 00001 2
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The variance covariance matrix of the random effects is defined by

o2 o 1 05 0
Yherd = 0']21 Apera = I2 Yisire = (O"ll O_Zél> Asie =05 1 0
S 0 0 1
2
o, 0
0 U% 0
01»2 03 0.501-2 0.50;, 0
5 0i 012 0.50;; 0.50’l2
0 0.5Ui2 0.50;; 01.2 oil 0
0.504; 0.5Ul2 0i) le
0 0 o o
il 0'12

2.2.4 Transformation to Independant Random Effects

As seen in Example 2.2 the variance covariance matrix of the random effects can become
quite complex. Most software implementations for predicting random effects are not able
to handle such models by default. However as already shown by Harville and Callanan
(1989), a simple transformation can make random effects of different animals independent.

For example take Model (2.10) and define the left Cholesky factor L4 as

A=LuLT, (2.13)

and the transformed random effects B* as

B*=L'B. (2.14)

It can easily be verified that the individual random effects of B* are mutually independent

Var (B*) = Var (L3'B)
= Ly Var (B) (Ly')T
= Ly Aop (L7
= Ly'LaL}(Ly")To}

_ 2
= Iqu.

In the following we present an extension of this method to the general Model (2.11).

Result 2.1. Assume a random vector B; ~ AN (6, A ® Ei) with A; = L AiLTAi' The distri-
bution of the transformed random vector

Bz* = (LAi ® I, i)_lBi

will be B ~ N (6, I, ® 2)
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Proof. Because B; is a linear transformation of a multivariate Gaussian, it will also be
multivariate Gaussian. The expected value and variance covariance matrix of B} are

E(Bf] =E (L, ® I,,)'Bi] =0

7

and

Var ((La, @ I,) ' Bi) = (La, ® I,) ™" Var (By) (La, @ I,,) ") 7
= (L) ® I)(4i © 30 ((La)T @ 1)

(L3t @ (5,%) (L) @ L)

(LAlA (LaD)T) @ (I, i)

using (G® H)(J® K) = (GJ) ® (HK).

O
Applying Result 2.1 we are going to define the transformed general model as
(Y | B =b") ~ N, (XB+ Z°b", [,0?)
~ (2.15)
B* ~ N, (0, 2*) .
The transformed elements are defined as
By
B*=| : with B} = (La, ® I,,) ' B;
By
and
7= (2t - z) with 27 = Z;(La, ® I,)
Alternatively, using a more compact notation
B*=T,'B _ . N
75— 2T, with Ty = diag ({LAZ- ® Ipi}i:l) . (2.16)

Note that Z*B* = ZB, therefore Model (2.11) and (2.15) are equivalent. However, the
random effects in the transformed model have the desired property of being uncorrelated
between animals
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I, ® %
E*

= diag ({Izi ® Ez‘}le) .
I, ® Xy

Therefore, the transformed model can be estimated with common software implementa-
tions for predicting random effects.

It remains to explain how to calculate L,4,. We have seen that L, can be obtained via
a Cholesky decomposition of the additive numerator relationship matrix. Calculating the
additive numerator relationship matrix for a large pedigree comes at a huge computational
cost. Luckily, Vazquez, Bates, et al. (2010) present a method to calculate L4 without
having to construct A explicitly. The method is based on a second decomposition

A=TDTT (2.17)
where 7' is a lower triangular matrix and D is a diagonal matrix. Both, 7" and D can be

directly calculated from the pedigree without having to calculate A (Mrode and Thompson
2005, Sargolzaei and Iwaisaki 2005). Using (2.13) and (2.17) we can calculate L4 as

La=TD'Y? (2.18)

Ezxample 2.3. Continuing from Example 2.2 the transformed random effects associated
with the sire term are given by

1 0 0
fe = (L. ® o) Bgire with  La, = |05 0.866 0
0 0 1
The transformed random effects are independent across animals
2
o, 0
0 0}21 0
Var (B*) = il O 9
0 0 % %il 0
0 0o % %

2.2.5 Identifiability

The animal model as formulated in Example 2.1 might raise questions with regard to the
identifiability of the model. For real world data sets, it might well be the case that we
have only one observation per animal. Random effects models with only one observation
per random intercept are usually not identifiable because the random intercept and the
residual error are indistinguishable. It seems necessary to derive general conditions on
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the pedigree and therefore the additive numerator relationship matrix, in order to ensure
identifiability of the model.

Result 2.2. The random intercept of an animal model is not identifiable with respect to
the residual error if and only if the additive numerator relationship matrix A is diagonal
i.e. all animals are unrelated.

Proof. Assume a model where the random intercept per animal is the only random term
next to the residual error and each animal has exactly one observation

(Y | B =b) ~ N, (b, 1,0%)

} . (2.19)

B~ N, (0, Aa,f)
The transformed model matrix for the random term is given by Z* = L4. We use The-
orem 4.1 of Wang (2013): A linear mixed effects model is not identifiable if and only if
V(X Xe), Iy, Xe) # (24, Xe), such that the following three equations hold

ALY AR A0 Y/ (2.20)

S — 3. = 252727 2 T(8, — 3. (2.21)
Hz

Sp—Sp = (272722 — 825 (27 2L (2.22)

Applied to model (2.19) we have

Y, = I,,0° Y. = 1,62
Yy = I,0} Sy = I,62.

From Equation (2.20) it directly follows that o? # 2. Equation (2.21) always holds as
can be verified by simplifying H

= La(LLLa)"' L}
= LaLy' (L)™' L}
= IT'L

Finally, simplifying Equation (2.22) results in

Sp— N = (272128, — 2) 25 (2*T2F) 7!
= (65 —0p) = (LyLa) ' LYIn(0f — 62)La(L}La)™"

£

b= 0b _ 117 17T T -1
= In—5——=3 = (LyLa) LyLa(L},La)
Oz — 0¢

In
= (LT L4t (2.23)
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=2

2
Define 6 = Z6—7% and solve Equation (2.23) for L4 results

2_52
gz —0¢

La= (L) to~t. (2.24)

Insert Equation (2.24) into A = L4 L7, results in

A= L) Lot =1,07"

i.e. Equation (2.22) is only fulfilled if matrix A is diagonal.

2.3 Model Extension: GLMM and Threshold

Using LMMs was based on the assumption that many alleles have a small effect on the
phenotypic value. Under this assumption the phenotypic value will necessarily be a contin-
uous variable which follows asymptotically a normal distribution. This is what we observe
for many traits which are relevant to breeding such as milk yield. However, some traits
are fundamentally different as they might be discrete or measured on a nominal or ordinal
scale. Using an LMM in such a case does not well reflect the true model and may lead to
predictions outside the support of Y. Therefore, a better model seems necessary.

In the best case scenario we would know the entire physiological process involved in the
expression of Y and could build up a mechanistic model to estimate the effects of the
alleles on Y. Unfortunately, we usually do not know the physiological process and even
if we would, the estimation might be way too complex to get reasonable estimates with
limited data. Therefore, we are looking for a simple modification of Model (2.15) allowing
for Y’s which are continuous or discrete and on a nominal, ordinal, ratio or interval scale.

2.3.1 Generalized Linear Mixed Effects Model

A well known strategy is to model the continuous parameters of a distribution which draws
values with the desired properties. This strategy is formalized as generalized linear model
(GLM). It allows modeling response variables from an entire class of distributions. GLM
can be extended to the generalized linear mixed effects model (GLMM) allowing besides
the fixed effects also random effects in the linear predictor.

A generalized version of Model (2.15) would be

(Y | B* = b*) ~ EDMn(P’aInQZ))
g(n) = XB+Z"b" (2.25)
B~ N, (0,57).

where EDM is any distribution from the exponential distribution family, u is the condi-
tional mean, ¢ is the common scale parameter and g(-) is the vectorized link function.
Vectorized means that the same univariate link function ¢(-) is applied to each element of
. Distribution and link function are chosen according to the nature of the response vari-
able Y. The choice of distribution affects weather the response is continuous or discrete
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and determines the relationship between pu and the variance of Y. The link function can
be any monotonic, differentiable function which links the conditional mean to the linear
predictor n = X3 + Z*b*. It is chosen in a way such that it maps the unbounded linear
predictor n € [—o00, 0] to the appropriate range of p. A common choice is the canonical
link which is defined via the canonical parameter of the EDM family (Dunn and Smyth
2018). The LMM (2.15) can be seen as a special case of Model (2.25) with the normal
distribution and the identity link.

2.3.2 Threshold Model

The generalization as stated in (2.25) allows us to model a large variety of response vari-
ables on different scales. However, the exponential distribution family shows limitations
when it comes to ordinal response variables. Ordinal variables are categorical with a nat-
ural order of the levels but with nonmetric distances between them. In animal breeding
they may occur if a metric trait is difficult to measure and therefore has to be visually
classified.

Threshold models build on linear models and offer an simple approach to evaluate ordinal
data (Biirkner and Vuorre 2019). Depending on the area of research they are also know
by the name ordinal regression model, proportional odds linear regression model, cumu-
lative model or graded response model. In animal breeding, threshold model is the most
commonly used term probably due to the early publication by Gianola and Foulley (1983).
Therefore, we are going to stick with this name. In its basic form, the threshold model
assumes an underlying latent (i.e. not observable) continuous variable for each observa-
tions which is usually called liability. The observed ordinal response originates from the
categorization of the continuous liability by breaking it up at specific latent thresholds.
For an ordinal variable with k£ + 1 categories, there are a total of k thresholds necessary
which are collected in the vector 7. The classification is completely deterministic given
the liability. Liabilities of all observations are collected in the vector I. Threshold models
may differ in the way how [ is modeled from the predictor variables. One of the simplest
way is to assume an LMM with I as response vector resulting in the following model

1 for —OO§Z¢§7‘1
for 7'1<li§7'2
(}/Z ’ li7T) =

1] B*=b")~N,(XB+Z*b", 1)
B~ N, (0,5).
The liability has a normal distribution with the mean given by the linear predictor (Fig-

ure 2.3). The variance is set equal to one because it would be unidentifiable as long as we
allow for arbitrary scaling of the threshold values.

2.4 Maximum Likelihood Estimation

In the previous chapters we have introduced LMMs, GLMMs and threshold models. All of
them are suitable to model the effect of many alleles on a trait of interest. In the following



22 Theory

Y;=Bad Yi =Medium Y;=Good Y; =Best

probability

T | T T
T (xp+Zb); T T3 I

Figure 2.3: Distribution of the liability for observation ¢ in a threshold model. The liability
is normally distributed with the mean given by the linear predictor. Thresholds split the
liability into regions of different categories. Observation ¢ in this example would have a
large probability to express level “Medium”.

we are going to show how the unknown model parameters in LMMs and GLMMs can
be estimated using the maximum likelihood framework. Threshold models will only be
covered in the section about Bayesian estimation (Chapter 2.5).

2.4.1 Linear Mixed Effects Model

Model (2.10), (2.11) and (2.15) are all LMMs with varying complexity of the random
effect’s variance covariance matrix. All of them can be estimated using the same procedure,
however, we will focus on Model (2.15) because it is more general than Model (2.10) and
has a simpler variance covariance matrix than Model (2.11). Model components X, Z*, y
and T4 are obtained from a data set and the associated pedigree. The data set contains
the response variable y along with the animals id and factors which are assumed to have
a fixed effect on y. The information in the pedigree can be used to set up T4 as defined
in Equation (2.16). 3 and ¥* are the unknown parameters which need to be estimated.
Additionally, we are interested in predicting the mode of the random vector B conditional
on the observed y.

In a first step we again transform the random effects similarly to what was done in Chap-
ter 2.2.4 but now the goal is to make them completely independent and not only indepen-
dent between animals. The transformed variance covariance matrix is decomposed into
two Cholesky factors and the residual variance

* = AgAjo? (2.27)

where Ag is a sparse lower triangular block diagonal matrix. It consists of k£ main blocks
and the ith main block consists of [; subblocks, each of which is a copy of a p; x p;
lower triangular template matrix 7;. The template matrix can be seen as the Cholesky
decomposition of the term-wise covariance matrix while factoring out the residual variance

¥, = TiT]o?.
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Figure 2.4: Matrices and vectors which determine variance covariance structure of random
effects in Example 2.2. The non-zero elements are shown as darkened squares. In Ag and
0 the same gray color represent the same number. ¥ is the symmetric variance covariance
matrix of B. The random effects of related animals are correlated. >* is the symmetric
variance covariance matrix of the transformed random effects B*. Random effects within
one animal might be correlated but are now independent between related animals. Ag is
proportional to the lower triangular Cholesky factor of ¥*. The unique elements of Ag are
column-wise combined to vector @ which typically is low dimensional.

The modeling assumptions can lead to many zero elements in Ag which do not need to
be estimated. Optimization only needs to be done over the value of all possibly non-zero
elements. All these elements are column-wise combined in the vector @ which completely
determines Ag given a specific model. The dimension of € is typically small which makes
numerical optimization possible (Figure 2.4).

The spherical random effects U are defined by

B* = AgU. (2.28)

It may seem more intuitive to write Equation (2.28) as U = A;lB*, however, Ag just
as X* could be singular, in which case only Equation (2.28) is valid. It can easily be

verified that U ~ N ((_f, Iq02> as shown in Bates (2020). Using the transformation in
Equation (2.28) we can define the independent model as

(Y |U =u) ~ N, (XB+ 2" Agu, I,0?)

2.29

U~ N, (0,1,0%). (229
The careful reader will have noticed that the above procedure could also be directly applied
to the untransformed Model (2.11). Instead of sequentially calculating the transformed
Model (2.15) and then the independent Model (2.29) we could calculate it directly from
(2.11) in one step. The reason for doing it in the outlined two step approach lies in com-
putational efficiency. ¥ can be a huge matrix consisting of term-wise variance covariance
matrices ¥; and term-wise numerator relationship matrices A;. Setting up > and calcu-
lating the Cholesky decomposition of it would come at high computational cost. With the
two step approach, we make use of the fast calculation of L, (Equation 2.18) and avoid
the calculation of A;. Setting up Ag as decomposition of the simplified >* can be done
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without even explicitly evaluating ¥*, something which would be impossible in a one step
approach.

The likelihood of the parameters 3, 8 and o given the observed data y is the marginal
density of Y evaluated at y and seen as a function of the parameters. In order to get the
marginal density, we integrate the joint density of Y and U with respect to u

L(B’gvg | y) = fY(y)
= /]R'I fru(y,u)du

= [ rvwly | wiotu)du. (2:30)

In LMMs, fyu(y | u) and fy(u) are densities of multivariate normal distributions

< ly — X8 — Z*Aeull2>
exp | —

leading to the likelihood function

_ 1 ly — XB — Z*Agu|* + |lu|®
L(IB,B,U | ’y) = /Rq Wexp ( 202 du. (231)

The integral can be solved analytically as shown in Bates (2020). Still, numerical opti-
mization with respect to 8, 8 and o would be expensive because the dimension of 3 can
be large. Luckily, we can directly (i.e. non-iteratively) determine the conditional estimates
,ég and &g which will maximize the likelihood given a value of 8. Therefore, B and o can
be profiled out of the likelihood and numerical optimization only needs to be done with
respect to 6.

In order to maximize the likelihood, the conditional estimate ,ég together with the condi-
tional mode @ will have to satisfy

u . *
~ | = argmin|jy — X8 — Z*Agul® + |Ju|®. (2.32)
ﬂ@ u,

Equation (2.32) can be identified as penalized least squares problem which can be rewritten
using the “pseudo-data” approach

2

w\ ) Yy Z*Ng X\ [u
BO = ar%%nn 6 — Iq (—)» B
—_ —

y* X* B*
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The penalty is added as additional dimensions to the residuals. The contribution of the
additional dimensions to the total euclidean length of the residuals vector is exactly the
same as the ||u||? penalty term in Equation (2.32). The normal equation of the above least
squares problem is given by

A Z T2 N + 1, AYZTTX (@) _ (AjZ°Ty (2.33)
XTZ*Ag XTX Be X'y |- '
—— —_——
X*TX* :8* X*Ty*

Solving for w and Be involves the Cholesky decomposition of the system matrix (X*TX™*).
Equation (2.33) has obvious similarities with the Henderson equation (Henderson 1982)
which is well known in the animal breeding community. However, Bates, Méchler, et al.
(2015) notes two key differences which favor the use of Equation (2.33)

1. The order of Ele and @ is reversed. In this way some of the components necessary to
evaluate the likelihood are a side product of solving the normal equation. Also, it
allows to exploit the sparsity of A)Z*TZ*Ag + I, in the Cholesky factorization. This
might be less relevant in our examples as the transformed matrix Z* is usually no
longer sparse in contrast to the untransformed Z.

2. The Henderson equation in its classical formulation contains ¥*~!. However, ©*
might become singular during the numerical optimization and even the final estimate
of ¥* might be singular. Equation (2.33) is more stable because it does not contain
any inverse of a possibly singular matrix.

Equation (2.33) needs to be solved many times in the course of the numerical optimization
with respect to 0. A fast algorithm to solve Equation (2.33) is the key component in each
implementation to fit LMMs under a likelihood framework.

2.4.2 Generalized Linear Mixed Effects Model

The maximum likelihood estimation for the parameters 3 and ¥* in Model 2.25 follows
a similar structure as in Chapter 2.4.1. The random effects are again transformed to be
mutually independent. However, because o2 is only meaningful for the normal distribution,
we redefine Ag as

¥ = AgAj.
The independant generalized model would therefore be defined as

(Y ’ U = ’LL) ~ EDMn(u7[n¢)
g(pn) = XB+ Z"Agu (2.34)
U~ N, (0,1,).

The likelihood of the parameters can again be written as

LB.0 1y = | Froly|u)fo(w)du (2:35)
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The main difference to Equation (2.30) concerns fyi7(y | u) which is no longer necessarily
a Gaussian. This seemingly small change has two serious implications which makes the
estimation process much more involved. First, unlike the LMM case, there is no guarantee
for a closed form solution to the integral in the GLMM case. Even worse, the integral
might be very high dimensional and contain terms in the integrand which are close to
zero, which makes numerical integration difficult (Jiang 2007). Second, there is no longer
a direct (non-iterative) solution for the conditional estimate By and the conditional mode

Uu.

As we will see below, the first problem can be tackled by using Laplace approximation.
The integrand is approximated with a second-order Taylor series expansion around .
However, because we need to know @ it makes sense to start with the second problem,
finding the conditional estimate B and the conditional mode @ given 6.

Conditional Modes

In contrast to LMMs, the maximum likelihood estimate Bg can no longer be exactly deter-
mined from the integrand fy |y (y | u)fu(u) as a function of 6. The final estimate needs
to be found simultaneously with @ by numerical optimization. The @ which maximizes
the integrand, we call it conditional mode B, still provides a good starting value for the
numerical optimization. The two conditional modes can be written as

<g> = argmax fyu(y | u) fu(u)
u,3

= arg min —21log ( fyy (y | v)) — 2log (fu (u))

u7ﬁ

The first density fy 7 (y | u) can be any density of the exponential distribution family. The
parameter which minimize its deviance also minimize a weighted least squares criterion
(Bradley 1973, Charnes, Frome, and Yu 1976). The contribution of the second density
can be added as penalty similarly to Equation (2.32) leading to

<g> = arg min HI/Vl/2 (y — Hu,ﬁ)HQ + [l (2.36)
u,3

where W is a diagonal weights matrix which ith diagonal element is proportional to the
variance of (Y; | U = u). Note that in general for the exponential distribution family, the
variance may depend on the location u;, meaning that W;; also depends on u and 3.

The conditional modes which satisfy (2.36) can be found with a penalized iteratively
reweighted least squares (PIRLS) algorithm as it is presented in Bates (2018). We are
going to motivate the PIRLS algorithm in three steps. In the first step the Gauss-Newton
Method is presented to find parameter estimates of a nonlinear least squares problem. In
the following two steps, we add the weights matrix and penalty to end up with the final
equation which is solved iteratively in the course of optimization.

Gauss-Newton Method Assume the least squares problem ming g ||y — pty. s> where
My g is a nonlinear function of w and B. The first order Taylor series approximation
of p, g around an initial guess u® and 8O is
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P & fhyo) go) + SO0

where S(© and 6@ are defined as

0) _ = (% o
S0 — (U(O) V(”)> = (aﬁ w(®) 8g’g(0>>

(0) 0
50 — (5“&])> = (u - UEOD .
s0) " \p-8
The vector of residuals can therefore be written as

Y~ HuB XY — My ) g0 —5@0),
N——— N———

r 7(0)

Instead of solving the nonlinear least squares problem min,, g |||, we can use the local lin-
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ear approximation of  and solve the linear least squares problem min 50 5O
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with normal equation
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Solving for 6 gives the direction in which w(®) and B89 needs to be updated in order
to minimize the original criterion. The updated vectors u™) and B are then used to
calculate the updated p,,q) go), SM and #M) and solve for 8 in the updated normal
equation. The process is repeated until a convergence criterion is fulfilled (Bates and
Watts 1988). A geometric interpretation of the method is shown in Figure 2.5.

2
can

Add Weight Matrix A weighted nonlinear least squares criterion HWI/ 2y — ,uuﬁ]‘
’2

be approximated locally by the weighted linear least squares criterion HWU 2 [r(i) ySOF) (i)]
in the same way as outlined above. The normal equation for the weighted least squares
problem is given by

UDTwu® pOrwy @\ (69 O 0
vOTWU® Oty 5};) “\yv@Twe®

N—_——
SO T/ 5(0) 500) SO) T (0)

Add Penalty The penalty term ||u||* in Equation (2.36) can be added as “pseudo-data”
to the weighted least squares criterion leading to

() -( ) (@)
0 1) [\—u® I, 0 )\&y

2
min
5 50
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Figure 2.5: Geometric interpretation of Gauss-Newton method. The response vector y
is shown as arrow in the response space. The solid black line represents the expectation
o as a function of parameter 3. The goal of least squares estimation is to find ,é which
defines the closest orthogonal projection of the response vector on the expectation space.
(a) In case of linear regression, the expectation space is a linear subspace spanned by X g3.
There is an explicit solution for B (b) In case of nonlinear regression, the expectation
space is a nonlinear subspace and ,é needs to be determined iteratively. w(3) is linearly
approximated around the initial guess 3°. The response vector is orthogonality projected
on the linear approximation /i to determine §°. (c) B° is updated to B! based on 6°. The
new estimate of 3 is already closer to the final estimate. The procedure is repeated until
convergence.

with corresponding normal equation

(Oh277%940) ATy @\ (6% @10
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Equation (2.37) can be seen as the Henderson equation for GLMMSs. It has to be solved
in each iteration in the course of finding conditional mode @ and B which in turn needs
to be determined many times during the numerical optimization with respect to 8 and 3.
Fast methods to solve the normal equation are therefore even more important than in the
LMM case.

Laplace Approximation

The integral in Equation (2.35) can be approximated with Laplace approximation using
the conditional mode w. First we define

g(u) = log (fyv(y | w)fu(w)).

Like the integrand, the function g(w) will have a global maximum at @. A second order
Taylor series expansion of g(u) around @ is given by
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— integrand
approximation

o

Figure 2.6: Laplace approximation. The integrand is approximated by an unnormalized
Gaussian density with the same mode and second derivative at the mode.

where the first order derivative ¢'(w) is zero because @ is a global maximum. Using the
Taylor series approximation we can solve the Integral

L(B,0 | y) = /Rq exp (g(u))du~ | 2

= exp (9(@) [ exp (—é“) du

= exp (g(w)) \/2m(—g"(w))~".

exp <g(a) + Loy u— a)?) du
2

The last step was done by identifying a Gaussian integral (Figure 2.6) with mean @ and
variance (—g”(@))~! which satisfies

1 1 (u—a)? _
= e Sy L

2.5 Bayesian Estimation

In the Bayesian framework, we separate between unknown (unobserved) and known (ob-
served) quantities. All unknown quantities are assumed to be random variables with a
prior distribution, expressing our prior believe about the quantity. Bayesian inference for
GLMMs has several advantages over likelihood inference (Zhao et al. 2006, Biirkner 2018,
Gabry and Goodrich 2020a).
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e Likelihood estimation for GLMMs usually involves Laplace approximation. Studies
showed that the approximation can be inaccurate and lead to asymptotically biased
estimators (e.g. Lin and Breslow 1996).

e Uncertainty estimates are considered to be more accurate. Accounting for the un-
certainty related to the estimation of variance components is difficult in likelihood
estimation (McCulloch and Searle 2000).

e Prior knowledge about parameters can be incorporated into the model by specifying
informative prior distributions.

e The output is a posterior distribution which allows to make probability statements
for every quantity of interest.

e Extensions to more complex models as generalized nonlinear mixed models or gen-
eralized additive mixed models are typically easier accomplished in the Bayesian
framework.

The downside of Bayesian estimation is that it usually comes at a higher computational
cost.

2.5.1 Generalized Linear Mixed Effects Model

In the likelihood framework, estimation of the LMM was fundamentally different compared
to the GLMM. LMMs allowed to analytically integrate out b whereas in GLMMSs this step
had to be done using an approximation. In the Bayesian framework there is no need to
integrate b out of the likelihood and the estimation procedures are the same (Gabry and
Goodrich 2020a). Therefore, we are going to explain the procedure for GLMMs with the
side note that LMMs are a special case of GLMMs where the response variable follows a
normal distribution and the conditional mean is related the linear predictor by the identity
link.

The unknown quantities are b, 8, ¢ and 8. According to Bayes’ Theorem, we can write
their joint distribution conditional on the data as

P(b,6,¢,8|y) x Ply|b,8,0,8) P(b,0,9,08). (2.38)

posterior likelihood prior

Note that € only acts on y through b (Figure 2.7), therefore

Py |b,0,¢,8) = P(y|b,0,08). (2.39)

Assuming independence of the random effects parameters b and 6 from the remaining
parameters 8 and ¢, we can write

P(b,8,6,8) = P(b,0) P(¢,8) (2.40)

and from the definition of the conditional probability if follows

P(b,6) = P(b| 6)P(6). (2.41)
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Figure 2.7: Graph representing the hierarchical character of a GLMM. Unknown quantities
are shown in circles whereas known quantities are shown in squares. The arrows show how
the quantities act on each other.

Inserting (2.39), (2.40) and (2.41) into (2.38) results in the 2-stage hierarchical Bayes
model

P(b,0,¢,8|y) < Py |b,¢,8)P(b|6)P(0)P(¢,8)

with sampling distributions

(y|b,¢,8) ~EDM, (g " (XB+ Zb), 1,¢)
(b]6) ~ N, (6, 29) .

Taking samples from the second sampling distribution will be difficult. Current random
number generators cannot draw high dimensional vectors (order usually > 10°) with such
complicated correlation structure (Fouilloux and Laloé 2001). Similarly to what was done
in the likelihood framework we can apply transformation (2.16) and (2.28) using Cholesky
decomposition ¥* = AgAj. The resulting model is given by

P(u,8,¢,8|y) < P(y | u,0,¢,8) P(u) P(0) P(¢,) (2.42)

with sampling distributions

(y | w,¢,8) ~ EDM, (g7 (XB+ Z*Agu), [,0)
u~ N, (6, Iq) :

The model is completed by assigning a prior distribution to parameter 8, ¢ and 3. Choos-
ing the prior distribution is part of the modeling assumption and has to be done for each
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data set separately according to prior knowledge. It is difficult to give general recommen-
dations which hold in all possible situations. Still, there are some guidelines in literature
on how to specify priors for GLMMs.

For the population-level (’fixed’) effects B it is common to use so called uninformative
priors like a Gaussian around zero with very large variance or even flat priors with uniform
probability over all real numbers. However, such uninformative priors tend to put too much
probability mass on very large parameter values. Generally, unless the data is very strong,
it is more wisely to use mildly informative priors which provide moderate regularization
and help to stabilize computation (Gabry and Goodrich 2020b).

The prior choice for the variance components 6 and ¢ is quite complex and has been
subject to extensive research over the last few years. Variance components are special
because the parameter space consists of only non-negative real numbers. Common prior
choices for a single variance parameter include uniform (Gelman 2006), half Student-t
(Gelman 2006) and inverse Gamma (Zhao et al. 2006). For random factors associated
with multiple predictor variables, we do not only want to estimate the variance of the
individual effects but also the covariance between them. Inverse Wishart distributions are
a popular prior for covariance matrices in GLMMs because they are conditionally conjugate
and therefore have good properties for the Gibbs sampler (Zhao et al. 2006). However, as
shown in Natarajan and Kass (2000), the inverse Wishart prior can lead to poor estimates
of the variance covariance matrix. An alternative is to separate the covariance matrix into
a vector of standard deviations and a correlation matrix. Half Cauchy or half Student-t
priors are applied on each element of the standard deviation vector whereas the correlation
matrix can be modeled by an LKJ-correlation prior (Lewandowski, Kurowicka, and Joe
2009). The half Student-t prior with 3 degrees of freedom has commonly the better
convergence property than the half Cauchy prior for elements of the standard deviation
vector (Biirkner 2017).

In animal breeding literature, common prior choices for 3 are bounded uniform distri-
butions and an inverse Wishart prior for the variance components (Chang et al. 2006,
Heringstad et al. 2006).

The careful specification of prior distributions according to prior knowledge is especially
important when the sample sizes are small. In this case, the posterior is not dominated by
the sampling distributions and prior terms in Equation (2.42) may have a strong influence.
In general, informative priors should be used if additional information is available.

2.5.2 Threshold Model

Model (2.26) can be transformed in the same way as done above (Equation 2.28) resulting
in a model for the liability which is given by

(1| U =u)~N,(XB+ Z"Agu, I))
U~N,(0,%).

Further, let’s define u; as the expected liability of the ith observation
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— (X8 + Z*Agu);.

The classification is completely determined by the realized liability, therefore we can write
P(Yi =i | i) = P(ry;—1 <1< 7y, | i)

P(l < Ty, ’ :ui) - P(l < Ty;—1 | Hi)
D(1y, — i) — D(7y,—1 — pi) (2.43)

with ® denoting the cumulative distribution function of the standard normal distribu-
tion. Equation (2.43) seen as a function of the parameters represents the likelihood for
one observation. Using the likelihood, we can formulate the posterior distribution of the
parameters as

P(u,0,8,7 |y) < P(y | u,0,8,7) P(u) P(6) P(B) P(1) (2.44)

with sampling distributions

Ply|u,0,8,7)= H‘I’(Tyi — i) — (7,1 — i)

Various prior distributions of T are suggested in literature including the Student-t and the
uniform distribution (Van Tassell, Van Vleck, and Gregory 1998, Heringstad et al. 2006,
Biirkner and Vuorre 2019).

2.5.3 Estimating the posterior distribution

The posterior distribution in Equation (2.42) and (2.44) cannot be derived analytically for
most combinations of sampling and prior distributions. The difficulty lies in the evaluation
of the normalization constant in Equation (2.42). It involves a high dimensional integral
which in practice might be impossible to solve. Markov chain Monte Carlo (MCMC)
methods allow us to sample from the unnormalized posterior distribution and use the fi-
nite sample to approximate the true posterior distribution. The idea is to create a Markov
chain of observations which moves stochastically through the parameter space and single
steps are chosen such that the final chain is more likely to stay at regions of high proba-
bility. Metropolis-Hastings is the most prominent algorithm to get a Markov chain with
the desired property. Given an initial state, the algorithm first proposes a random step in
the parameter space. The step is always taken if the unnormalized posterior probability
at the proposed state is higher than at the initial state. However, if the unnormalized
posterior probability is lower, the step will only be taken with probability proportional to
the ratio of the unnormalized posterior probabilities. It can be shown that the distribu-
tion of the samples obtained by the Metropolis-Hastings algorithm will asymptotically be
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the posterior distribution (Hastings 1970). Therefore, we can approximate the posterior
distribution without having to calculate the normalization constant.

Despite the great success of the Metropolis-Hastings algorithm, it is not always the com-
putationally most efficient method for obtaining a sample from an unnormalized distribu-
tion. Especially in a very high dimensional parameter space, most of the proposals will
be rejected and a relatively low number of steps are taken compared to the number of
calculations which need to be done. A better approach would not just randomly propose
steps in any direction of the parameter space but instead make an informed suggestion
based on the geometrical properties of the unnormalized probability function. This is the
main idea behind Hamiltonian Monte Carlo. It is based on the fact that for high dimen-
sional distributions, the vast majority of the probability mass is located at an intermediate
region, called typical set, in between the median region and the outer regions where the
probability is close to zero. Hamiltonian Monte Carlo algorithms allow to wander within
the typical set without unnecessarily proposing and rejecting steps which would lead out-
side of the typical set. A nice visual introduction to Hamiltonian Monte Carlo can be
found in Betancourt (2018).



Chapter 3

Implementation

3.1 Likelihood Approach

3.1.1 Existing Packages

The most commonly used packages in R for fitting mixed models in the likelihood frame-
work are nlme (Pinheiro, Bates, and R-core 2020) and 1lme4 (Bates, Maechler, et al.
2020). The package nlme was primarily designed for fitting LMMs and nonlinear mixed
effects models (NLMMs). It is relatively slow, lacks support for GLMMs and is no longer
actively developed, which makes it a bad starting point for our implementation. 1lme4
on the other hand features sparse matrix representation and is partially implemented in
C++ which makes it much faster for large data sets. The package is primarily used for
fitting LMMs and GLMMs but also has some limited capabilities for NLMMs. It is well
documented and still actively maintained and developed. For this reason we have chosen
1lme4 as the base structure for estimating breeding values in the likelihood framework.

The fitting functions of the package are structured in four modules (Bates, Méchler, et al.
2015).

1. The formula module creates a list of objects which are necessary for model fitting.
This includes the model matrices X and Z as well as the left Cholesky factor Ag.

2. The objective function module creates a function which takes @ as an input and
returns the deviance. In LMMs, Equation (2.33) is solved for ﬁe and w and then,
in a second step, the function evaluates the deviance by solving the integral in
Equation (2.31) using .

3. The numerical optimization module uses a gradient free algorithm to minimize the
deviance function with respect to 8. Commonly used optimizers which are well
supported by 1me4 include BOBYQA and Nelder-Mead. However, the user can
also define his own optimizer.

4. The output module stores the results in a useful object of class MerMod . There are
several methods available for this class to extract information from the model and
do inference.

The structure is slightly changed for GLMMs . As mentioned in Chapter 2.4.2, numerical
optimization in GLMMSs needs to be done with respect to € and 3. A preceding simplified
optimization can be useful to find good starting values. To this end, the deviance function

35
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is first minimized with respect toﬂ alone, using the conditional mode B as estimate for
3. The resulting estimate 6 and 3 evaluated at 0 are then used as starting value for the
final numerical optimization with respect to 8 and 3.

The time-critical step of solving Equation (2.33) in LMMs and (2.37) in GLMMs make
use of the CHOLMOD library of C functions (Chen et al. 2008). In this way, the spares
structure of Z and Ag can be exploited in the Cholesky decomposition of the system
matrix.

1me4 can fit a wide variety of models with nested, partially- or fully crossed random
effects. However, it is relatively restrictive with X, the covariance matrix of the random
effects. By default there is no support for defining a specific correlation structure in the
random effects as we observe it between the breeding values of related animals. The
package pedigreemm (Bates and Vazquez 2014) was released in 2009 to address this

feature. It is built on top of 1lme4 with the goal of making 1lme4 ’s fast computational
machinery available for genetic evaluations (Vazquez, Bates, et al. 2010).

pedigreemm contains classes and functions to define a pedigree and calculate the corre-

sponding left Cholesky factor L 4. At the core of the package is the function pedigreemm() .
It allows fitting LMMs and GLMMs with correlated random effects based on a specified
pedigree. Internally, the function performs the following steps

1. All arguments given to the function pedigreemm() except for the pedigree argu-

ment are passed to the corresponding fitting function of 1lme4 .

2. The model is fitted without considering the correlation structure of the random
effects.

3. The left Cholesky factor L4 is calculated from the pedigree.

4. Model matrix Z is extracted from the output of step 2 and transformed to Z* in a
similar but less general way as it is done in Equation (2.16).

5. The transformed model has uncorrelated random effects between animals and is
passed to 1lme4 for estimation. The starting values of the optimizer are chosen
according to the fitted model in step 2.

6. All model components are collected in a list and returned as an object of class
Imerpedigreemm .

The output can be inspected with the same functions as used on fitted objects in 1med . A
method of the generic function ranef() automatically transforms the predicted random
effects b* back to their original scale. Unfortunately, the package has some serious flaws
which needs to be addressed.

Bug in back transformation of random effects

The back transformation of the random effects contains a small bug with serious conse-
quences. The transformation is done with the right Cholesky factor LT, instead of the
left Cholesky factor L. The resulting random effects are wrong for all animals with
older related animals in the pedigree. We have performed some simulations based on
the pedigrees included in the package. The predicted random effects had consistently a
larger mean squared error (MSE) than predicted random effects resulting from the correct
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pedigree <- list(grouping_factor_1 = pedigree_1,

grouping_factor_N = pedigree_N)

LA <- relfactor(pedigree_i)
index <- index of columns associated with grouping factor i
Z[,index] <- Z[,index] %*% LA

}

1
2
3
4 for (i in 1:N) {
5
6
7
8

Code 3.1: Pseudocode of Z matrix transformation in pedigreemm package

transformation. The increase in MSE highly depended on the signal to noise ratio of the
simulation and the average relationship of the animals.

The bug was already present in the first version of the package and surprisingly has been
undetected ever since. The package has already more than 38’000 downloads from CRAN
and has been cited by 79 publications (status as of 2020-06-29), many of which using it to
predict breeding values and relying on the wrong results. The corresponding author was
contacted but the bug has not been resolved yet.

Animal model with single observations

The animal model assumes an individual random effect for each animal. For some traits,
there is only one observation per animal. The model would be unidentifiable without
considering the correlation between breeding values. However, an animal model with
single observations should be identifiable as long as not all animals are unrelated as we
have seen in Chapter 2.2.5.

lme4d by default performs some checks in order to detect ill-specified models. It will
automatically throw an error if the number of levels in one grouping factor is not smaller
than the number of observations. The automatic check is not suppressed by pedigreemm .
Therefore, it is impossible to fit animal models which actually would be identifiable. This
issue has repeatedly been raised in an R mailing list (R Mailing List 2010, R Mailing List
2012, R Mailing List 2014) but the package authors have not addressed the issue so far.

No support for random regression models

The package implements the transformation of the model matrix Z in a very simple way.
Users can associate a grouping factor with a pedigree in the argument pedigree . Each

association is saved as one element of a list (Code 3.1). The function pedigreemm loops
trough all elements, calculates L4 of the pedigree and overwrites the columns of matrix
Z which corresponds to the grouping factor by the transformed version. The simple
implementation does not allow for more than one term in the random effect expression
(i.e. p; > 1). Also, the pedigree grouping factor can only be used in one term, otherwise
the function will throw an error.

Slow for large data sets

Data sets in animal breeding can be huge. 1me4 does have a focus on performance but
the methods generally rely on the sparsity of matrix Z and Ag. The transformed matrix
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Z* is no longer sparse in general leading to drastic increase in running time.

3.1.2 Generalization and improvement

Our goal was to implement an improved version of the pedigreemm() function which is
able to fit LMMs and GLMMs with correlated random effects based on a pedigree. The
function should focus on speed, allow for random regression models and fix the critical bug
of the pedigreemm package. The structure was chosen to follow as closely as possible the

current structure of the 1lme4 fitting functions, allowing for an easier inclusion of future
1me4 updates. Therefore, we decided to write two separate functions, cowfit_lmer ()

for fitting LMMSs and cowfit_glmer() for fitting GLMMs.

Avoid model fitting before transformation

The pedigreemm() function started with fitting the model before transforming it. In
many cases this can make sense. However, the untransformed model might be unidentifi-
able leading to estimates for @ which are way off and represent bad starting points for the
subsequent optimization of the transformed model. The cowfit functions avoid fitting
the untransformed model and instead only calculates the important model components
(Z, Ag, ...) which can be achieved quickly with the formula module functions of 1lme4 .
The check for the number of levels in each grouping factor is suppressed, allowing to fit
animal models with single observations.

Model transformation

The transformation of the Z matrix is based on Equation (2.16). The function get_TAt ()

(Code 3.2) is used to calculate the transformation factor T, from the output of the for-
mula module function and the argument pedigree . Note that we directly calculate the
transpose of the transformation factor in Equation (2.16). T appears to be more useful
due to some computational shortcuts in 1me4 . The transpose of the model matrix Z
shows a regular column patterns which is preferred by the CHOLMOD library for storage
reasons (Bates, Michler, et al. 2015). It appears that all calculations in 1me4 can be done
with ZT whereas Z never has to be evaluated. For this reason we will have to transform
ZT which can be done using

ZT=TLZ7.
T, is additionally stored in the final output of the fitting function.

Optimization with predefined variance components

Speed is one of the major issues when using pedigreemm() to fit a full data set of an
animal population. The runtime quickly increases for more complex models with larger
number of animals. Profiling the functions shows that the most computationally demand-
ing part is by far the numerical optimization with respect to @ (and 8 in case of GLMM).

From the breeders point of view, the variance components, which are determined by 8, can
be regarded as nuisance parameters and are not of primary interest. The main focus is on
the breeding values or more specifically the ranking of the breeding values which usually
is not too much affected by assuming slightly wrong variance components. In breeding
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1 get_TAt <- function(lmod, pedigree) {

2 pnms <- names(pedigree)

3 f1 <- lmod$reTrms$flist

4 asgn <- attr(fl, "assign")

5 TAt_list <- vector("list", length = length(asgn))

6 for(i in seq_along(asgn)){

7 fac_name <- names(fl) [asgn[i]]

8 p-i <- length(lmod$reTrms$cnms[[1]1])

9 1_i <- length(levels(lmod$reTrms$flist[[fac_name]]))

10 on_list <- fac_name %in}, pnms

11 if (on_list) {

12 Zt_i <- 1lmod$reTrms$Ztlist[[i]]

13 fac_levels <- rownames(Zt_i) [seq(l, length(rownames(Zt_i)), p_i)]
14 Lt_Ai <- relfactor(pedigree[[fac_name]], fac_levels)

15 TAt_1ist[[i]] <- kronecker(Lt_Ai, diag(p_i))

16 } else {

17 TAt_list[[i]] <- diag(p_i*1_i)

18 }

19 }

20 TAt <- Matrix::bdiag(TAt_list)
21 as(TAt, "dtCMatrix")
2 }

Code 3.2: The function to calculate the transformation factor 7. The argument lmod
contains the output of the formula module function in 1me4 whereas the second argument
pedigree is a named list similar as in Code 3.1. 1me4 changes the order of random
terms according to the number of levels for efficiency reasons. asgn keeps track of which
grouping factor corresponds to which of the reordered terms (line 4). The function loops
through all terms (line 6-18) and checks for each term whether it has a grouping factor
which is associated with a pedigree (line 10). If this is the case, LLi is calculated with the

function relfactor() and the term-wise transformation factor is obtained from L4, ® I,
(line 15). An identity matrix of the correct dimensions p;l; is constructed if the grouping
factor is not associated with a pedigree. Finally, all term-wise transformation factors are
combined to one block diagonal matrix and returned as an object of class dtCMatrix .

programs of Qualitas, variance components of most traits are estimated only once every
four year and afterwards assumed to stay constant for regular breeding value estimations.
This highlights the importance of having a fast method for estimating breeding values
given the variance components.

Unfortunately, 1me4 does not support specifying the variance components by default and
we need to come up with a solution by ourselves. The variance components should be
passed as a vector to the fitting function. First, we need to define the ordering of the
variance components in the vector. We stick to the same rules as used by 1me4 in the
method as.data.frame() for objects of class VarCorr.merMod which we describe in
the following.

First we have a look at the ordering of the variance components within one term. The
random term i of form (REexp_i | factor_i) with p; columns in the raw model matrix
X; will add
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(pi + 1)
m; =
2

variance components to the model. We require the variance components to be specified in
the following order

1. All variance terms in the order as they are specified in REexp_i .

2. All covariance terms between column j = 1,...,p; and all subsequent columns in
the order as they are specified in REexp_i .

Between the different terms, the ordering is defined by the number of levels in the grouping
factor in descending order. The residual variance is added as the last element. The last
element should be set to 1 for GLMMs without common scale parameter ¢.

Example 3.1. Assume an LMM of the form y ~ (a + b + ¢ | facl) + (d + e | fac2)
where factor 2 has more levels than factor 1. The term-wise covariance matrices will have
the form

2 2 2
% @ % o3 o
J— €
Yi=|0m 0 Op Yo = 2 2
2 2 2 Ode Oe
Oac Ophc Oc

2 2 2 2 .2 -2 _2 2 _2 _2\7
(Ud ¢ Ode %a 9y Oc Ogp Tac Tpe U)

Because the ordering is quite complex and error-prone, we provide the helper function
cowfit_var_comp() which prints the ordering for a specific model formula.

The correctly ordered variance component vector is passed to the fitting function via the
argument var_comp . The fitting function will check the variance components and throw
an error if the vector has the wrong length or if the resulting variance covariance matrix >
would not be positive semidefinite. The variance component vector is transformed to the
vector @ by the function var_to_theta() (Code 3.3). 0 can finally be used to evaluate
the deviance function. However, this last step has major differences between LMMs and
GLMMs.

In LMMSs, 1me4 profiles 0 out of the deviance function. The variance components are
not directly contained in @ but on a scale relative to o2. Therefore, a predefined 8 will
only fix the ratio between variance components and o2 but not the absolute value of the
variance components. The genetic variance components might be well known for a certain
trait in a specific population and should not change too much over time because they
are only determined by the available alleles and their frequency. However, o depends
on the data quality which might be highly specific for each data set. The fitted variance
components are not exactly equal to the predefined if the predefined o does not exactly
match the o2 of the data set.

There is the possibility to numerically determine @ which minimize the MSE between
predefined and obtained variance component. The procedure is inspired by a post of



3.1 Likelihood Approach 41

1 var_to_theta <- function(var_comp, cnms){

2 sigma_order <- function(nc){

3 M <- matrix(0,nc,nc)

4 diag(M) <- 1l:nc

5 M[lower.tri(M)] <- (nc+1):(ncx(nc+l)/2)

6 M[lower.tri(M, TRUE)]

7 }

8 nc <- lengths(cnms)

9 ncseq <- seq_along(nc)

10 1t <- split(var_comp[1:(length(var_comp)-1)],

11 rep.int(ncseq, (nc * (nc + 1))/2))

12 out <- vector("list", length = length(nc))

13 for(i in seq_along(nc)){

14 rowIndices <- rep(l:nc[i], 1:nc[il)

15 colIndices <- sequence(l:nc[i])

16 template <- sparseMatrix(rowIndices, collIndices, x = 1)
17 template@x <- as.double(1t[[i]] [sigma_order(nc[i])])

18 Sigma_i <- Matrix::forceSymmetric(template, uplo = "L")
19 chol_sigma <- tryCatch({chol(Sigma_i)},

20 error = function(cond){

21 stop("var_comp does not lead to positive semi-definite matrix.")})
22 Lambdat <- t(chol_sigma/sqrt(var_comp[length(var_comp)]))
23 out[[i]] <- Lambdat@x

24 ¥

25 unlist (out)

26}

Code 3.3: The function to transform the variance component vector to vector 8. Argument
cnms is a list where the ith entry contains the column names of matrix X; and argument
var_comp contains the correctly ordered variance components. The variance components
are split into a list with k entries containing the variance components of each term (line
8-11). The function loops through all terms. A lower-triangular template matrix of ¥;
with the proper dimensions is created (line 16). The sigma_order() function reorders
the variance components of a single term, such that they can be column-wise filled into the
lower triangular template of matrix ;. The filled template is expanded to the symmetric
matrix ¥; (line 18). A; is calculated according to the Equation ¥; = A;Alo? and the
elements of A; are column wise combined to 6;. Finally, 8 is created by combining all 8;.

Ben Bolker on Stack Overflow (Stack Overflow 2016) and implemented in our function
Bolker_exact_var_comp() . Our implementation is much faster compared to the one
suggested on Stack Overflow because we do not optimize with respect to the possibly higher
dimensional € but only with respect to the one dimensional scaling factor (Code 3.4). Still,
the algorithm relies again on numerical optimization and is much slower than the direct
approach where only the ratio between variance components and o is conserved. The user
can choose with the argument exact_var_comp whether the final variance components
should exactly match the predefined ones or if only the ratio of variance components and
o? is fixed (Figure 3.1).

In GLMMSs, not all distributions have a scale parameter and it is not profiled out of the
deviance function by default. Therefore, the variance components are determined by 6 on
an absolute scale and there is no need to numerically determine the scaling in order to
get exact variance components in the final model. Still, the optimization with prespecified
variance components in GLMMs is not trivial because, in contrast to LMMs, numerical
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Figure 3.1: Numerical optimization module of cowfit_lmer() . The colored part is added

to the usual lmer () procedure to allow for prespecified variance components.
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1 Bolker_exact_var_comp <- function(devfun, var_comp, lmod, mcout) {

2 manual_theta <- var_to_theta(var_comp = var_comp, cnms = 1mod$reTrms$cnms)
3 buildMM <- function(theta)q{

4 ff <- devfun(theta)

5 opt <- list(par=theta, fval = ff, conv = 0)

6 mkMerMod (environment (devfun), opt, lmod$reTrms, fr = lmod$fr, mc = mcout)
7 }

8 objfun <- function(x, target = var_comp[-length(var_comp)]){

9 scaled_theta <- manual_theta*x

10 mm <- buildMM(scaled_theta)

11 myvcov <- as.data.frame(VarCorr (mm))$vcov

12 return (sum( (myvcov[-length(myvcov)] - target)~2))

13 }

14 opt <- optim(fn=objfun, par = 1, method = "L-BFGS-B", lower = 0)
15 buildMM(manual_theta*opt$par)

Code 3.4: Numerical optimization to get exact variance components in LMMs. The func-
tion buildMM() takes the vector 8 and returns the fitted model. The function objfun()

scales @ by the scaling factor x, fits the model and returns the sum of the squared de-
viation between predefined and obtained variance components. optim uses numerical
optimization to minimize this criterion with respect to x . Finally, the fitted model at the
best scaled @ is returned.

optimization needs to be done with respect to 3 (Figure 3.2).

Predict random effects

Random effects cannot be estimated because they are random. However, we can calculate
the mode b* of the conditional distribution B* | Y = y which represents the most likely
realization of B* given y. The calculation of b* and separation into components of different
terms is well implemented in 1me4 by the function ranef() . It only remains to back-
transform them to the original random effects vector b. pedigreemm does this separately
for each term which becomes increasingly complex with random regression models. An
easier solution is to back-transform b* before it is separated into components of different
terms. The method of ranef() for objects of class lmedcowfit achieves this by only

adding a single line of code to the original ranef() function.

3.2 Bayesian Approach

3.2.1 Existing Packages

Hamiltonian Monte Carlo sampling is implemented in the programming language Stan
(Carpenter et al. 2017). The package rstan (Guo, Gabry, and Goodrich 2020) provides
an R interface to Stan allowing to fit Stan models directly from R. Still, it requires the user
to be fluent in the Stan language and implies much more typing to fit a GLMM compared
to the simple 1lme4 syntax. Luckily, there are packages which translates R formula syntax
to arguments required by rstan, notably rstanarm (Gabry and Goodrich 2020c) and
brms (Biirkner 2020). As an additional benefit, these packages guarantee an efficient
parameterization of the Stan model and provide weakly informative default priors which
show good performance in most practical applications.
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Figure 3.2: Numerical optimization module of cowfit_glmer() . The colored part is

added to the usual glmer() procedure to allow for prespecified variance components. The
structure with prespecified variance components mirrors the original structure. The initial
step is a simplified optimization to find good starting values. In the case of prespecified
variance components the initial step only includes the PIRLS algorithm in order to find
the conditional mode B . In the second stage, ,é is used as a starting value for the numerical
optimization of the deviance function at a fixed 8. The second stage can be suppressed
with setting argument nAGQ = O .
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The main difference between the packages concerns the compilation of the Stan script.
brms writes the Stan script and compiles it in runtime which makes it very flexible but,
due to the additional compilation time, relatively slow for small data sets. rstanarm
on the other hand has precompiled Stan scripts which makes it impossible to implement
models which are not natively supported.

An implementation of GLMMs with pedigree correlations structure of the random effect
turned out to be very difficult in rstanarm. The function code allows to transform the
random effect model matrix Z, however, the precompiled Stan script does not always
make use of the Z matrix directly. Instead, under some conditions it uses some computa-
tional shortcuts which do not reliably work with a transformed Z matrix. Therefore, our
implementation of Bayesian GLMMs is based on brms .

Parameterization in brms differs from the one used in Chapter 2.5.1 (which closely fol-
lowed the parameterization used by 1me4 ). Previously, all variance component parameters
were combined to vector 8. There is no vector @ in brms . Instead, the parameters of
term ¢ are separated between vector o; and Cholesky factor C;. Together, they define the
term-wise variance covariance matrix ;. o; contains the root of the diagonal elements of
Y; and C; is the left Cholesky factor of the corresponding correlation matrix of 3; such
that

Y; = diag (o) Xeor,; diag (o)
= diag (o) C;C] diag () .

The random effects of different terms are stored in separate variables, therefore the linear
predictor becomes

n=XB+ Z1by + -+ Z;by.

brms has built-in support for correlated random effects. The variance covariance matrix
of the random effects can be assigned to a specific grouping factor using the function gr ()
in the model formula

y ~ FEexpr + (REexpl | gr(factorl, cov = VarCovMatrix1)) + ....

The covariance is taken into account by transforming a vector of initially independent
random effects similarly to the transformation approach described in Chapter 2.2.4. The
notation differs due to the different parameterization but the resulting random effects are
equivalent. If we apply the transformation as it is defined in Equation (2.16) and (2.28)
with XF = Ag;A};, the linear predictor becomes

n = X,3+ Znglul + -+ Z]:Agkuk

The contribution of the ith random term can now be rewritten as
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ZiNgiwi = Z; (La, @ Ip,) (1; @ T;) w;
=7;(La, ®T;) u;
= Z; (La, ® diag (o) C;) u; (3.1)

which represents the transformation of the ith term as it is done in brms .

At the core of the brms package is the fitting function brm() . It contains two im-
portant internal functions namely .make_stancode() which writes the Stan script and
.make_standata() which prepares a list of all input data to be used in the Stan script.
brms in its current form already allows to fit GLMMs for genetic evaluations, thanks
to the implemented transformation to independent random effects. Additionally, it has
built-in support for threshold models which can be used by specifying the argument
family = cumulative("probit") . Further information about the threshold model im-

plementation in brms can be found in Biirkner and Vuorre (2019). Still, compared to the
likelihood implementation described in Chapter 3.1.2, there are a few adaptations which
could be useful

1. The syntax to specify the variance covariance matrix is different to the syntax as we
know it from the package pedigreemm . It could be easier for the end user if the
functions for likelihood and Bayesian estimation both use the same syntax.

2. The correlation between random effects can only be specified by explicitly calculat-
ing the variance covariance matrix. However, as we have seen in Chapter 2.2.4 the
calculation of the additive numerator relationship matrix for large pedigrees comes
at huge computational cost whereas the calculation of its Cholesky factor is much
simpler. Only the Cholesky factor is necessary to apply the random effect transfor-
mation in Equation (3.1). Therefore, it should be possible to avoid the calculation
of the additive numerator relationship matrix and directly pass the Cholesky factor
to an adapted version of brm()

3. Currently, there is no option to prespecify the variance components in brms . Pre-
specifying the variance components would be useful for faster estimation of the ran-
dom effects.

3.2.2 Implement improvements

In order to use a similar syntax in the Bayesian implementation, we created the wrapper
function cowfit_brm() . The function takes similar arguments as cowfit_glmer () and

transforms them into the corresponding brms() syntax.

The second improvement avoids the calculation of the additive numerator relationship
matrix. The wrapper function directly passes the Cholesky factors to brm() . T'wo internal
functions of brms needs to be changed in order to make sure the Cholesky factors are not
used as variance covariance matrices. The function validate_recov_matrix() would
test the input for symmetry and positive definiteness. In a later step, .make_standata()
applies a Cholesky decomposition to the input and saves it in a list containing all data
used by the Stan script. Our adapted versions of the internal functions avoid the tests
and Cholesky decomposition. Instead, the input is directly used as Cholesky factor in the
Stan script.
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Two changes are necessary to implement predefined variance components in brms . The
variance components needs to be transformed to the brms parameterization and the inter-
nal functions .make_stancode() and .make_standata() needs to be adapted. The first
change is implemented in the function var_comp_to_stan_format() . As input, it takes
the variance component in the same format as outlined in Chapter 3.1.2. The term-wise
variance covariance matrices are constructed and decomposed into o; and C;. These ele-
ments are added to the data list constructed by an adapted version of .make_standata() .

Finally, .make_stancode() is adapted such that o; and C; are no longer added as pa-
rameters but instead as data (Code 3.5).

3.3 Package

The new functions are included in the package cowfit . Installing the package guarantees
that all necessary dependencies are also installed. Additionally, the exported functions
come with a help file including useful examples on how to apply them. A vignette about
how to get started is also provided. The package is still in development and not everything
might be perfectly tested. It can be obtained from GitHub (Zihlmann 2020).
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1 data {

2 int<lower=1> N; // number of observations

3 vector[N] Y; // response variable

4 int<lower=1> N_1; // number of grouping levels

5 int<lower=1> M_1; // number of coefficients per level

6 int<lower=1> J_1[N]; // grouping indicator per observation

7 matrix[N_1, N_1] Lcov_1; // cholesky factor of known covariance matrix
8 vector[N] Z_1_1; // group-level predictor values

9 vector[N] Z_1_2;

10 F

18

parameters {

}

real Intercept; // temporary intercept for centered predictors
real<lower=0> sigma; // residual SD

vector<lower=0>[M_1] sd_1; // group-level standard deviations
matrix[M_1, N_1] z_1; // standardized group-level effects

cholesky_factor_corr[M_1] L_1; // cholesky factor of correlation matrix

transformed parameters {

matrix[N_1, M_1] r_1; // actual group-level effects

// using vectors speeds up indexing in loops

vector[N_1] r_1_1;

vector[N_1] r_1_2;

// compute actual group-level effects

r_1 = as_matrix(kronecker(Lcov_1, diag pre_multiply(sd_1, L_1)) *
to_vector(z_1), N_1, M_1);

r 1.1 =rx_1[, 11;
r 1.2 =r_1[, 21;
}
model {
// initialize linear predictor term
vector [N] mu = Intercept + rep_vector(0, N);
for (n in 1:N) {
// add more terms to the linear predictor
mu[n] += r_1_1[J_1[n]] * Z_1_1[n] + r_1_2[J_1[n]] * Z_1_2[n];
}
}

Code 3.5: Parts of Stan code for GLMM written by brms for a model of the form y ~

(x1|factor). The object names correspond to the following variables: Lcov_1 = Ly,
sd_1 =01, L_1 =C1, z_1 = uy. For efficiency reasons, relating the random factor to

the observation is not done with a Z matrix but instead with indicator vector J_1 and

predictor vectors Z_1_1 and Z_1_2. Line 24 and 25 correspond to the transformation
of the random effects as it was shown in Equation (3.1). In order to allow for predefining
the variance components, line 14 and 16 need to be moved to the data sector (line 1-10).



Chapter 4

Benchmarking

In this chapter we compare different implementations and their options. First, we focus
on using the improved implementations outlined in Chapter 3 and test which functions
and argument settings perform best for a simulated data set with respect to computation
time and correct ranking of the animals. In a second stage, we compare the improved
implementations with alternatives which might be considered for this estimation problem.

4.1 Simulation and Estimation

We simulated a variety of comparably small animal models. Two pedigrees which are con-
tained in the package pedigreemm were used. The smaller ( pedSires ) was a 3-generation

pedigree containing a total of 352 animals. The bigger ( pedCowsR ) contained five gen-
erations and a total of 6’547 Holstein cattle. A random breeding value was sampled
for each animal in the pedigree. To this end, we first sampled independent transformed
breeding values (B*) from a normal distribution and transformed them back to the de-
pendent scale using the left Cholesky factor of the additive numerator relationship matrix
(Equation 2.14). Variance components and in some models additional predictors were
specified and finally the response variables were simulated according to LMMs, GLMMs
and threshold models.

All models were fitted on a CPU with a 3.5GHz Intel© Xeon© E5-1650 v3 processor. For
Bayesian estimation, we used four independent Markov chains each running on a separate
core.

4.2 Specific Evaluations

4.2.1 Consider Correlation between Animals

The first goal was to compare estimation methods which take into account the complex
correlation structure between animals against estimation methods which falsely assume
independence between animals. To this end, simple LMMs were simulated containing only
the random animal effects and the residual error. Three data sets were created for each
pedigree containing different number of observations per animal. The signal-to-noise ratio
was kept constant except for the small pedigree with three observations per animal where
it was varied over several orders of magnitude. The simulated data sets were fitted with

49
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Figure 4.1: Effect of taking the pedigree into account on Spearman correlation and com-
putation time. Simulated data sets of different sizes and with varying signal-to-noise ratio
were fitted with 1mer () and cowfit_lmer() . Note that lmer () cannot fit models with
single observation per animal.

the functions lmer() and cowfit_lmer() .

Unsurprisingly, the ranking of the animals consistently improved when the correlation
structure was taken into account (Figure 4.1). The effect was stronger at low signal-to-
noise ratios where the additional information from related animals were able to clearly
improve the estimation of breeding values. It is expected to be even stronger if we observe
higher correlations between animals in a pedigree for example due to inbreeding. Still, the
overall effect was small in relation to the massive increase in computation time. Therefore,
it might be justified to assume independence between animals at least for model selection
and account for the correlation only in the evaluation of the final model.

4.2.2 Likelihood vs Bayesian Framework

We compared the performance of GLMM estimation in the likelihood and the Bayesian
framework. The linear predictor consisted of only the random breeding value and was
transformed to a probability via the inverse logit function. A varying number of observa-
tions were drawn from a Bernoulli distribution for each animal. The signal-to-noise ratio
was again only varied in the small pedigree with three observations per animal. All data
sets were fitted with cowfit_glmer() and cowfit_brm() .

The results indicate similar ranking performance of the likelihood and the Bayesian im-
plementation (Figure 4.2). The likelihood implementation had slightly better Spearman
correlations for data sets with single observations whereas for data sets with multiple ob-
servations it was vice versa. A major difference between the two implementations arises



4.2 Specific Evaluations 51

with regard to the computation time. The likelihood implementation was much faster for
small data sets. The main reason was the compilation of the Stan script which took about
half a minute at each execution of cowfit_brm() , independent of the data set size. For
large data sets the computation time became more equal and for very large data sets the
Bayesian implementation might actually be faster (see Chapter 5).

4.2.3 Given Variance Components

Allowing to fit models with given variance components was one of the major changes
from existing implementations. A small simulation was performed to verify the expected
decrease in computation time. The same data sets as in Chapter 4.2.1 and 4.2.2 were used
and now estimated with given variance components. The fitting was done with functions
cowfit_lmer() , cowfit_glmer() and cowfit_brm() .

The results showed a considerable drop in computation time by providing the variance
components (Figure 4.3). The computation time was 4-8 times lower in the likelihood
setting. In the Bayesian setting the drop was not as pronounced, especially with larger
models. Spearman correlations very slightly increased in about a quarter of the fitted
models and stayed constant in the remaining ones.

4.2.4 Sensitivity on Variance Components

In the previous chapter we assumed the given variance components to exactly match the
“true” underlying ones. These would likely be unknown in a real world setting and the
variance components of previous evaluations or from literature might be slightly wrong for
the specific data set. For this reason, we evaluated the sensitivity of the estimated animal
ranking on wrong variance component specification. Three LMMs with increasingly com-
plex model structure were considered. The first only included the random animal effect, in
contrast to the second and third model which also included a second random effect. The
levels of the second term were either largely independent of the animal levels or strongly
correlated. The models were fitted by cowfit_lmer with given variance components.
The true animal variance component was scaled over several orders of magnitude. Addi-
tionally the model with correlated random terms was fitted assuming wrong residual error
variance. The goal was to check whether the argument exact_var_comp improved the
estimation of @ and therefore the ranking of the animals.

Overall, the effect of the wrong variance component specification strongly depended on the
degree of dependence between the two random effects (Figure 4.4). Only the ranking of the
model with strongly correlated levels was negatively affected by slight misspecifications of
the variance components. This observation can be easily explained by an example: let’s
assume we strongly underestimate the animal variance component and there is a largely
correlated predictor (e.g. herd). Most of the variance which should be explained by animal
will be assigned to herd and therefore the ranking of the animals will become worse. On
the other hand, if there is no correlated predictor, the variance which should be explained
by animal cannot be assigned to any other predictor. The ranking of the random animal
effects will stay conserved, even if we underestimated the variance component by orders of
magnitude. However, the absolute values of the random animal effects as well as estimates
of heritability which are calculated from the variance components will be greatly under-
estimated. Therefore, special care in variance component specification has to be taken in
models with strong correlation between the animal or sire levels and at least one additional
predictor. All models with the same predictors had similar computation time independent
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of the variance components which were used. The argument exact_var_comp clearly im-
proved the ranking of animals especially if the residual error was largely underestimated.
However, it came at large computational cost, as was expected due to the numerical op-
timization with respect to 6.

4.2.5 Numerical Optimization for Fixed Effects

lmed: :glmer () allows to suppress the numerical optimization with respect to the fixed

effect parameters by setting the argument nAGQ = 0. This greatly speeds up the estima-
tion but also leads to less accurate estimations of the fixed effect parameters. In animal
breeding we are not so much interested in the fixed effect parameters but mainly in the pre-
diction of the random effects. Also, computation time is a big issue due to the large data
sets. For this reason, the nAGQ argument was also transferred into the cowfit_glmer ()

estimation procedure (see Figure 3.2). We tested the effect of the argument nAGQ on
the estimation performance of simulated GLMMs containing a random animal term and
a fixed factor with five levels. Only simulated data sets based on the small pedigree were
considered but with varying numbers of observations per animal.

Avoiding the numerical optimization with respect to the fixed effect parameters decreased
the computation time considerably (Figure 4.5). It is a great option in cases where there
is no correlation between fixed and random predictors. The resulting estimate of 3 was
clearly biased and not as accurate as it would have been with numerical optimization.

4.2.6 Evaluate binary data with LMMs

As mentioned in Chapter 1, non-normal response variables are often modeled with LMMs
despite several disadvantages of this practice. Our goal was to evaluate the effect on the
ranking of the animals, the breeding value estimates and the breeding value standard
deviation estimates. To this end, we simulated 100 GLMMSs with Bernoulli distribution,
logit link and only the random animal effect in the linear predictor. For each animal
20 observations were sampled. We assumed independent animals and fitted the models
with lmer() , glmer() and brm() . The fitted model was used to predict breeding
values which were compared against the true ones. In LMMs, the true breeding values were
first transformed by the inverse logit function before comparing them with the predicted
breeding values such that they would be on the same absolute scale. For each breeding
value we calculated the standardized estimation bias and the standardized sd bias which
were defined as

standardized est bias = bi _Abi
Sd(bz)
standardized sd bias = M

The results show a comparable ranking over all three estimation methods (Figure 4.6),
indicating that LMMs might actually be a simple alternative for some genetic evaluations
which primarily target the ranking of the animals. However, the absolute value of the
estimated breeding values were strongly biased in the LMM evaluation. Only the Bayesian
implementation obtained good estimates of the breeding value accuracy. LMM estimations
of breeding value accuracy were strongly biased and not trustworthy.
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Figure 4.6: Evaluating binary data with LMMs. Binary data which were simulated based
on a GLMM were evaluated as LMM and GLMM using likelihood (lik) or Bayesian esti-
mation methods.

4.2.7 Evaluate ordinal data with LMMs

In the same way as in Chapter 4.2.6 we also evaluated the effect of falsely using metric
models for ordinal data. A threshold model with one fixed effect term and a random
animal effect was set up and 100 data sets were simulated from it. The threshold values
were randomly drawn from a uniform distribution in each simulation cycle. The data
sets were analyzed with cowfit_lmer() and cowfit_brm() by treating the response
variable either as metric using an LMM or as ordinal using a threshold model.

The threshold model improved the animal ranking in 97% of all simulated data sets. How-
ever, on average the Spearman correlation only increased by 0.02 from 0.67 to 0.69. The
better ranking came also at greater computational cost. Within the likelihood framework,
the LMMs were fitted in less then a second due to the small size of the data set. The
Bayesian estimation of the LMMs took on average 37 seconds but most of it can be at-
tributed to the compilation of the Stan script. Estimating the threshold model increased
the computation time on average by 60% compared to the Bayesian LMM.

4.2.8 Alternative Implementations

Our implementations are built on the packages pedigreemm , which uses maximum like-

lihood or restricted maximum likelihood estimation, as well as brms , which is based on
Hamiltonian Monte Carlo. A frequently used alternative for GLMM estimation which
we did not consider are approximations like the penalized quasi-likelihood approximation
(PQL) and the integrated nested Laplace approximation (INLA). Packages like spaMM

(Rousset, Ferdy, and Courtiol 2020) and AnimalINLA (Holand et al. 2013) implement
these methods and promise a fast and accurate prediction of random effects. We also
wanted to test alternative MCMC implementations which use Metropolis-Hastings updates
and Gibbs sampling instead of Hamiltonian Monte Carlo. A widely used implementation
is the package MCMCglmm (J. Hadfield 2019).
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Figure 4.7: Comparison of GLMM implementations for genetic evaluations.

The simulated data of Chapter 4.2.2 based on the small pedigree were fitted with packages
pedigreemm, spaMM using PQL and MCMCglmm . Especially spaMM showed promising
results for the relatively small data sets (Figure 4.7). Trials on larger data sets did not
converge in reasonable time. MCMCglmm was a much faster Bayesian alternative but the
predicted ranking was not as precise in the case of single observations. The original
pedigreemm implementation had much lower correlations in all models due to the bug
explained in Chapter 3.1.1.



Chapter 5

Swiss Cattle Data

5.1 Multiple Birth

5.1.1 Theory

Multiple birth is a relatively rare phenomenon in cattle and its frequency strongly depends
on the cattle breed. The frequency is usually below 1% in beef cattle whereas in dairy
herds we observe a higher frequency of 4-5% (Komisarek and Dorynek 2002). Mechanisms
behind multiple birth include multiple ovulation and spontaneous single embryo division.
The first mechanism comprises more than 90% of all double births in cattle (Cady and
Van Vleck 1978). Multiple ovulation can be considered as a trait of the dam and therefore,
multiple birth can be largely associated with genetic predisposition of the dam and not
with the genetic predisposition of the zygote (Johansson, Lindhé, and Pirchner 1974). The
trait is strongly affected by age and parity of the dam, with a higher rate of multiple birth
in older dams and dams at higher parity. It might also be affected by seasonality with more
multiple births during spring and autumn (Karlsen et al. 2000, Gregory, Echternkamp,
et al. 1990).

Multiple birth in combination with intensive management usually has a positive effect
on productivity in beef cattle. In dairy cattle it is the complete opposite and animals
with low risk for multiple birth are preferred. The negative effects of multiple births in-
clude freemartinism, dystocia, premature calving and retained placenta. Freemartinism
describes the phenomenon that 82-92% of heifers in a mixed sex multiple birth event are
not fertile (Zhang et al. 1994, Komisarek and Dorynek 2002). The cardiovascular system
of cattle siblings usually becomes connected at an early stage of pregnancy. The result-
ing exchange of hormones between siblings of different sex leads to infertile females and
reduced fertility in males. Heifers from mixed sex multiple birth events can therefore not
be used for milk production. Dystocia refers to difficult births usually due to an abnor-
mal presentation of one or both foetuses at parturition. Together with premature calving
and retained placenta it poses a health risk to calves and dam and increases calf mortal-
ity. Breeding on lower multiple birth rate in dairy cattle is impaired by the unfavorable
correlation between twin birth frequency and milk production (Komisarek and Dorynek
2002). Additional difficulties include the low heritability, sex-limited trait expression and
the long generation interval prolonging the time span until descendants show phenotypic
observations for progeny testing. Nevertheless, there are successful examples of increasing
the multiple birth rate over several selection cycles in beef cattle (Morris and Wheeler

o7
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2002, Gregory, Bennett, et al. 1997).

5.1.2 Exploratory Data Analysis

The multiple birth data set of Qualitas contains 19’104 birth events with 705 twins and one
triplet (Figure 5.1). It is a subsample of a larger data set which was collected by the Swiss
Braunvieh breeding association and includes Braunvieh cattle from Switzerland between
1990-2019. Possibly important covariates were also collected namely dam id, parity of
the dam, birth season, number of inseminations to achieve pregnancy and sexing method
which describes the procedure used to separate seamen by sex. The variable parity is right
censored at the 5th parity. The data set contains 8’637 dams which are direct descendants
from 1’534 sires. A detailed pedigree including all dams and their sires is available. The
average sire is associated with 12.5 birth events, whereby 571 is the largest numbers of
birth events associated with one sire. 78% of all sires are never associated with a multiple
birth event (Figure 5.3).

Possible dependencies between the covariates and the multiple birth trait were visually
investigated (Figure 5.2). Only parity was found to be strongly associated with multiple
birth. Additionally, there is a strong dependency between parity and the number of
inseminations (Figure 5.3), meaning that cows at higher parity need significantly more
inseminations to become pregnant.

5.1.3 Modeling

It is a difficult task to find a good fitting model at reasonable computational cost, given
the size of data set and pedigree. We applied some heuristic methods to save computation
time. First, we started fitting a sire model which contains a much lower number of random
effects compared to the animal model. The model selection was entirely based on the wrong
assumption of independent sires, leading to a sparse Z matrix and faster estimation of the
model parameters. A variety of hierarchical models were fitted by adding and removing
covariates. The models were compared based on a partial F-test. The finally selected model
was fitted by additionally considering the correlation structure in the random effects due
to the relationship between the sires.

The best fitting sire models were also fitted as animal models and compared based on a
partial F-test in order to confirm that the same model would be selected in the animal
model framework. Again, we tried to estimate the selected model including the correlation
structure of the random effects. We failed to directly fit the animal model in reasonable
time and decided to separately estimate the variance components with two different strate-
gies

1. Directly adopt the variance components of the fitted sire model to use them in
the animal models. FEach sire inherits only half of its additive genetic effect to
the offspring. Therefore, the variance component of the animal model o2 can be
estimated from the sire model using

aﬁ = 4052

(see for example Kriese, Bertrand, and Benyshek 1991).

2. Estimate the variance components from a smaller subset of all data. The data set
was reduced by removing observations which lead to the largest reduction in the
number of random factor levels.
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Figure 5.1: The multiple birth data set. There are a total of 19’104 birth events of which
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rated according to the Beltsville sperm sexing technology (method 1) or according to the
Bovitel ™ procedure (method 2).

parity birth season
2 3

1 4 >4 4 1 2 3
— Pearson Pearson
residuals: residuals:
14
4.0
2.0
< 0.0 <
5o -2.0 59
0 Z 0 Z
s -4.0 =3 0.0
3 =
£ £
-11.0 -11
@ e — Z @ e =
$ MmO p-value = 3 ] —r 11 p-value =
> <2.22e-16 > 0.12393
sexing method number of inseminations
2 1 2 3 4567
— Pearson R, Pearson
residuals: residuals:
0.16 2.00
0.00
£ £
5o 5o
o Z o Z
= =3
E B
0.00
-0.69 -0.67
@ = - @ — U -
O [ 10 p-value = L — — p-value =
> 0.46726 > 0.17885

Figure 5.2: Mosaic plot of multiple birth and possibly relevant covariates. The area
of each tile is proportional to the number of observations within that category. The
p-value results from a Pearson chi-squared test with the null hypothesis (Hp) assuming
independence between multiple birth and the covariate. A large positive Pearson residual
(blue) indicate a larger number of observations then would be expected under Hy. We
observe a strong deviation from the expected frequencies under Hy between multiple birth
and parity.
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population. 78% of all sires have a twin frequency of zero and 97% of all sires are associated
with multiple birth in less than 1/3 of all associated birth events. Right: mosaic plot of
parity and number of inseminations, which are strongly related.

Subsequently, the full animal model was fitted using the separately estimated variance
components.

5.1.4 Results

The model selection process resulted in the following model
mult_birth ~ as.factor(parity) + (1|hy) + (1|sire).

Parameter values of covariates birth season, sexing method and number of insemination
were not significantly different from zero when added separately to the model. Including
parity as a factor accounted for the non-linear increase in multiple birth with higher parity
and was strongly significant. The herd year effect hy was added as random effect because
it has many levels and can be considered as an additional error term.

The sire model with unknown variance components took roughly 9:30 h to fit with the
likelihood estimation and 34 minutes using the Bayesian estimation running on four sepa-
rate cores. The parameter estimates associated with parity were almost identical between
the two estimation methods (Table 5.1). An average cow in the first lactation had a fitted
probability of 0.007 for multiple birth. The probability increased to 0.038 in the second
lactation and was relatively constant thereafter.

For heritability estimation we were using the formula for logistic regression described in
Vazquez, Gianola, et al. (2009)

2

2 403
2 w2
05—1—3

which resulted in a heritability between 0.13-0.14. This estimate was clearly above the
estimates found in other studies which ranged between 0.01-0.10 (Cady and Van Vleck
1978, Gregory, Bennett, et al. 1997, Karlsen et al. 2000, Maijala and Osva 1990, Ron,
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Table 5.1: Estimates and standard error of multiple birth model parameters. The sire
model was estimated in the likelihood (lik) and Bayesian framework. The animal model
was estimated either on a subset of the data or on the full data set using variance com-
ponents from the sire model or from the subset model. For each model the parameter
estimates (est) and the standard error (se) is reported if available.

parameter sire animal
lik Bayes subset o, Sire o, subset
est se est se est se est se est se
Oa - - - - 0.65 - - - - -
O 0.33 - 035 0.08 - - - - - -
Thy 0.39 - 038 0.09 0.39

intercept  -4.88 0.16 -4.89 0.17 -4.52 0.56 -5.11 0.18 -5.09 0.19
parity 2 1.67 015 168 0.16 093 059 170 0.16 1.69 0.16
parity 3 1.80 0.16 1.80 0.17 0.65 060 182 0.16 1.82 0.16
parity 4 1.85 0.17 186 0.17 075 059 188 0.17 188 0.17
parity 5 1.84 0.15 184 0.16 1.01 054 187 0.16 1.87 0.16

Fzra, and Weller 1990, Syrstad 1984, Van Vleck and Gregory 1996, Ghavi Hossein-Zadeh
et al. 2009).

The breeding values of the sires ranged between -0.51-0.54 and the 95% equal-taild credible
intervals were comparably large (Figure 5.4). Descendants of the upper 10% of sires had
an odds ratio of multiple birth which was 1.58 times higher than the odds ratio of the
lower 10%. For example, in the second parity this corresponds to a probability of 0.05 in
the upper 10% versus a 0.03 in the lower 10%. The effect was relatively small as we would
expect from the low heritability.

Transforming the sire model variance component to the animal model variance component
resulted in a variance estimate of o2 = 0.44. The variance component estimate from
the subset was slightly lower (02 = 0.42). Fitting the full model with given variance
components took about 15 h with Bayesian estimation using four cores. The variance
component estimates from the two different estimation strategies were so close such that
there was not a notable improvement of using one over the other. The ranking of the
estimated breeding values from both models were almost identical (Spearman correlation

> 0.99).

5.2 Calf Mortality

5.2.1 Theory

The calf mortality rate of European countries range between 4-7% (including stillbirths,
Svensson, Linder, and Olsson 2006). A slight increase in calf mortality was noted in resent
years (Santman-Berends, Buddiger, et al. 2014). However, Santman-Berends, Schukken,
and van Schaik (2019) found that small differences in the definition of the trait have a
large effect on possible trends. There is no trend observable over the last few years in the
Swiss Braunvieh population (Berweger 2020). Still, due to the economic importance of
the trait, it would be desirable to include it in the overall selection criterion (Osteras et al.
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Figure 5.4: Distribution of multiple birth breeding values. The left plot shows a histogram
of the sire breeding values. The right plot includes the 95% equal-taild credible intervals
(gray line) to each sire breeding value.

2007).

Literature mentions a few important factors influencing calf mortality rate like sex, herd
size, birth season, multiple birth and housing (Del Rio et al. 2007, Gulliksen et al. 2009).
Male calves, calves in large herds and calves born during the cold season are all associated
with a higher mortality rate. Twins and triplets are at risk because of birth complications
and the generally lower birth weight. Calves housed in a group pen rather than individually
were also found to have an increased mortality rate probably because of the exposure to
higher levels of infectious agents. In the first 30 days of life, calves are especially sensitive
to respiratory diseases and diarrhea. These diseases play a minor role at later stages.
Therefore, it can make sense to separate calf mortality into different traits according to
the rearing period (Carlen et al. 2016).

The current Swiss Braunvieh breeding program already includes calf survival during first
hours and cow longevity. However, survival rate in the period between the already con-
sidered traits have not been included so far. Calf mortality is mainly influenced by man-
agement and has therefore a low heritability. Still, Carlen et al. (2016) showed that it is
possible to achieve breeding progress in the trait. The study observed a general increased
progress in health traits but also a slight reduction in yield progress as a result of selection
on lower calf mortality rate.

5.2.2 Exploratory Data Analysis

Qualitas has calf mortality data of the Swiss Braunvieh breed from the time period between
1990-2019. The subsampled data set includes 103’066 calves. Mortality was divided into
two age groups, namely 3-30 days and 31-458 days. Mortality rate was 2.8% and 3.5%
in the first and second age group, respectively. We only focus on the first age group in
this analysis. Available covariates are calf id, parity, sex, herd and year. Male calves and
calves of the first parity had a higher mortality rate (Figure 5.5). The calf id links each
calf to a pedigree including 181’198 related animals.
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Figure 5.5: Left: empirical cumulative distribution function of calf mortality rate for the
sire population. 73% of all sires are never associated with calf mortality and 92% in less
than 10% of all offspring. Right: mosaic plot of calf mortality, sex and parity. Male calves
have a high risk especially in the first parity.

5.2.3 Modeling

Model selection and variance component estimation was based on the same approach as
described in Chapter 5.1.3.

5.2.4 Results

The final sire model included fixed predictors sex and parity as well as the random factors
sire and a combination of herd and year (rhby)

P1 ~ sex + parity + (1|rhby) + (1|sire).

Fitting the sire model with unknown variance components took 2:40 h in the Bayesian
framework. The same model in the likelihood framework did not reach convergence after
more than 27 h and was stopped. Parity and sex were strongly significant as already
expected from the exploratory data analysis. The fitted odds ratio for calf mortality
was increased for male calves and calves of the first parity by a factor of 1.54 and 1.38,
respectively. Male calves of the first parity had a fitted mortality of 0.04 compared to a
mortality of 0.02 in female calves of higher parities.

The estimated variance component for the random sire and herd year effect was 0.09 and
0.66, respectively. The resulting heritability was 0.10. Again, this was higher than the
1-3% which are reported in literature (Carlen et al. 2016). All breeding values are shown
in Figure 5.6. The breeding value of the best sire (id 46’332) was -0.37 which corresponds
to a fitted mortality of only 0.013 in female calves of second or higher parity. The observed
mortality rate of the 288 calves which are associated to this sire was 0.014, which was very
low compared to the overall mortality rate.
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Figure 5.6: Distribution of calf mortality breeding values. The left plot shows a histogram
of the sire breeding values. The right plot includes the 95% equal-taild credible intervals
(gray line) to each sire breeding value.

5.3 Carcass Conformation

5.3.1 Theory

The value of an animal for slaughter is largely determined by carcass traits. Important
carcass traits include carcass weight (which is not the same as live weight), carcass fatness
and carcass conformation. The last one describes the proportion between valuable parts
and less valuable parts of the carcass. It is difficult to measure carcass conformation on
a metric scale which is why the trait is often visually scored. Many countries including
Switzerland have their own scoring system which makes it difficult to compare results
among countries.

Carcass conformation is a highly heritable trait and therefore an interesting breeding tar-
get. Heritability estimates found in literature span over a wide range somewhere between
0.1-0.44 (Hickey et al. 2007, Varona, Moreno, and Altarriba 2009, Kause et al. 2015). In
practice, the estimation of breeding values is often achieved by assuming a metric scale
and using LMMs. Estimation with threshold models would be favorable as they account
for the ordinal nature of the scores (Gianola and Foulley 1983). Several studies obtained
a higher expected selection response with the threshold model, especially if they allowed
for slaughterhouse specific thresholds (Varona, Moreno, and Altarriba 2009, Tarrés et al.
2011). Possibly important predictors include sex, parity, age, season, year, herd, multiple
birth and slaughterhouse. Age might have to be squared before including it in the linear
predictor in order to account for its nonlinear effect. The model parameters have been
shown to be highly breed specific (Kause et al. 2015).

Selection on carcass conformation also affects other carcass traits. Generally, carcass
conformation is positively correlated with carcass weight. Correlation with carcass fatness
is again highly breed specific with for example a negative correlation coefficient in breed
Limousin and a positive correlation coefficient in breed Hereford (Kause et al. 2015).
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Figure 5.7: Carcass conformation data set. 95% of all animals have the highest conforma-
tion score. The majority are male animals where cast stands for castrated male animals.
There are three different production system with abbriviation “ao” standing for conven-
tional beef cattle production, “an” for suckler cow husbandry which are culled at an age
of 10 months and “as” for suckler cow husbandry which are culled arround an age of 13—
20 months. The last panel shows a histogram of the age distribution at culling. The peak
arround 300 days can be mostely attributed to animals of the “an” production system.

5.3.2 Exploratory Data Analysis

Qualitas has a data set containing 5’341 animals of beef cattle breed Limousin which are
born between 2012-2019. For each animal the carcass conformation score was determined
after slaughter. The overwhelming majority of animals achieved the highest carcass con-
formation score, which is typical for animals of breed Limousin (Figure 5.7, Kause et al.
2015). The data set also contains possible predictors including sex, age, season, year, herd,
production system, slaughterhouse and id of the trained technician which performed the vi-
sual scoring. Each observation is linked to a pedigree containing a total of 13’903 animals.
All phenotyped animals are direct descendants to 495 sires. The number of phenotyped
offspring per sire ranges between 1-250 with an average of 10.8.

Pairwise analysis of the variables revealed a strong relationship between carcass confor-
mation and the predictors sex and production system (Figure 5.8). Female animals and
animals from the production system “an” were largely over-represented in the group of
animals with a carcass conformation score below seven.

5.3.3 Modeling

Fitting separate thresholds for each slaughterhouse was unrealistic as the data set was
relatively small and some slaughterhouses had only very few observations. For this reason,
we included slaughterhouse as a random factor together with id of the technician, sire
and a combination of herd and year. The full model additionally included sex, production
system and a polynomial age term of second degree as fixed effects.

In order to get a more parsimonious model, we applied step-wise backward elimination
using the function lmerTest::step() (Kuznetsova, Bruun Brockhoff, and Haubo Boje-
sen Christensen 2020). Elimination was based on p-values with threshold 0.1 for random
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Figure 5.8: Mosaic plot of carcass conformation score and possibly relevant covariates.
There is a strong dependency between carcass conformation and the predictors sex and
production system.

effects and 0.05 for fixed effects and assuming independence between sires as well as a
conditional normal distribution of the carcass confirmation scores. The reduced linear
predictor was used in a threshold sire model, a threshold animal model and a sire GLMM
using a binary response which indicated whether the carcass conformation score was seven
or not. All three models accounted for the correlation structure given by the pedigree and
were fitted with cowfit_brm() .

5.3.4 Results

Only the quadratic age term was dropped during the model selection procedure leading
to the linear predictor

cc ~ sex + prodSys + (1|slaughterhouse) + (1|idTech) + (1|herdYear) + (1|sire).

Fitting the models took between 9-52 minutes. With default settings the Markov chain of
the threshold models contained several divergent transitions. After manually adjusting the
target average proposal acceptance probability, which corresponds to the adapt_delta

parameter in brms , we obtained better results in the sire model with decent looking trace
plots. The animal model still contained many divergent transitions and was therefore not
trustworthy. As expected from the exploratory data analysis, female animals and animals
from the production system “an” had the lowest fitted liability (Table 5.2). Using the
variance component estimates, we calculated the heritability of the threshold sire model

Table 5.2: Estimates (est) and standard error (se) of carcass conformation threshold sire
model parameters. The reference level is given by a male animal of production system

“an”‘

parameter est se parameter est se parameter est se
Oslaughterhouse  0-92  0.29 T4 -3.35 0.30 Btemale -0.38 0.08
O'herd:year 0.16 0.07 75 -2.62 0.26 ﬁcast -0.08 0.11
Osire 0.36 0.06 T6 -1.64 0.26 Bao 0.32 0.14

Bas 0.52 0.12
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Figure 5.9: Carcass conformation breeding values. Left: sorted breeding values with
95% equal-taild credible intervals. Right: liability distribution of male offspring from sire
6’111 (lowest breeding value) and sire 6’650 (highest breeding value) assuming production
system “as”. Animals above threshold 74 have a carcass conformation score of seven. The
probability of falling below the threshold was 0.09 and 0.01 for offspring of sire 6’111 and
sire 6’650, respectively.

with the formula

2
h2 —_ Ogire

2
Osire to

2 2

slaughterhouse + Gherd:year + Ug

which resulted in a heritability estimate of 0.09. This rather low value might be attributed
to the highly unbalanced data set with most observations having the highest carcass con-
formation score.

The sire breeding values ranged between -0.64-0.41 and their distribution was slightly left
skewed (Figure 5.9). The low variance at the upper end of breeding values can again be
explained by the fact that a large fraction of sires had no progenies with carcass confor-
mation score below seven. Evaluating the same data set with the binary response GLMM
resulted in almost the same ranking of the sires (Spearman correlation > 0.98) at a lower
computational cost, showing that in this specific unbalanced data set the response variable
was already close to binary. Analyzing the breeding values over time revealed no trend in
the last few years. The top ten sires with the highest breeding value are summarized in
Table 5.3. As it is common in animal breeding, the breeding values are reported together
with the accuracy r? which was calculated with the formula
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Table 5.3: Top sires for each trait (bv = breeding value, 72 = accuracy)
rank multiple birth calf mortality carcass conf
id bv r2 id bv r? id bv 2

6966 -0.51 0.33 46’332 -0.37 0.32 6650 0.41 0.32

5177 -0.45 0.33 114’799 -0.30 0.23 6’801 0.39 0.35

9619 -0.35 0.40 105513 -0.29 0.10 6’822 0.39 0.36

9607 -0.33 0.40 106’495 -0.27 0.30 3’459 0.36 0.26

1’2452 -0.31 0.00 101’271 -0.27 0.10 7709 0.35 0.30

3467 -0.30 0.17 93’582 -0.26 0.17 7400 0.33 0.31

1’4712 -0.30 0.03 74’795 -0.26 0.11 7070 0.31 0.38
1’2719 -0.28 0.04 100’818 -0.26 0.07 9637 0.31 0.30
1’3082 -0.28 0.09 53’88 -0.25 0.22 7664 0.30 0.32

0 1’0979 -0.28 0.16 72’353 -0.25 0.32 9235 0.30 0.22
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Chapter 6

Discussion

In this thesis, we investigated the use of GLMMs and threshold models for the genetic
evaluation of non-normal response variables. The models, which both are widely used
in other areas than animal breeding, clearly showed some advantages over LMMs in the
benchmarking and were successfully applied on real world cattle data.

6.1 Insights from Benchmarking

Only implementations which accounted for the complex relationship between animals made
use of all available information in order to predict breeding values. This led to a general
improvement of the animal ranking but also showed the enormous increase in computa-
tional cost associated with the correlation structure. The ranking of the animals was still
relatively good under the simplified independent animal assumption and also led to similar
absolute breeding values as were obtained under the model accounting for the correlation.
This finding was used as a justification to assume an independent model for the com-
putationally expensive model selection process. Despite having similar breeding values,
the simplification might have undesired effects on model selection in more complex set-
ting. Better model selection strategies which account for the correlation between animals
should be further investigated. A promising option might be lasso regression which per-
forms regularization and model selection simultaneously. Model selection becomes even
more important for genomic models which contain a large amount of predictors (Haws et
al. 2015). Lasso already showed good performance in the prediction of genomic breeding
values (Ogutu, Schulz-Streeck, and Piepho 2012).

The comparison of likelihood and Bayesian estimation clearly revealed the advantages and
disadvantages of both methods. The main advantage of likelihood estimation was the fast
computation when applied to small data sets. Bayesian estimation was relatively slow
for small data sets but comparably fast when applied to the much larger Qualitas data
sets. An additional benefit of the Bayesian method was the improved estimation of the
breeding value accuracy. The Bayesian method takes into account the uncertainty with
respect to the variance component estimation, something which is, up to now, not possible
in the likelihood framework (McCulloch and Searle 2000). Therefore, estimated credible
intervals and standard errors of breeding values obtained from Bayesian methods are far
more trustworthy than those obtained from likelihood estimation. Finally, the Bayesian
implementations were highly versatile allowing to fit a wide variety of models with the same
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function including GLMMs and threshold models. Overall, in our opinion the advantages
of the Bayesian implementations clearly outweigh the additional computation time for
smaller models. Especially for the estimation of GLMMSs, where the likelihood estimation
heavily relies on the iterative PIRLS algorithms, Bayesian estimation methods have proven
to be not that much slower while offering all the above mentioned benefits. Still, likelihood
implementations remained useful in the case where a large number of models needed to
be fitted on a relatively small data set. This situation was given for example in model
selection based on a subset of the data.

Most packages, especially those which were not primarily designed for genetic evaluations,
had little to no support for prespecifying variance components. Our implementations show
that it is relatively easy to allow for such a feature. In most cases, prespecified variance
components led to a large decrease in computation time. The animal ranking was quite
robust even if the variance component was wrongly estimated by a factor of 10, something
which could usually be prevented by comparing variance component estimates with those
found in literature. For this reason, we strongly recommend a wider implementation of
the possibility to prespecify variance components and note this as a key feature for any
breeding value estimation software.

Even though the ranking of animals was clearly improved with the threshold model, eval-
uating binary and ordinal variables with LMMs still lead to a relatively good ranking of
the animals. Therefore, we can confirm the findings of previous studies which suggested a
good ranking performance of LMMs for binary and ordinal data (Negussie, Strandén, and
Mintysaari 2008, Vazquez, Perez-Cabal, et al. 2012). Besides the ranking performance,
however, LMMs showed clear deficiencies with respect to estimating the absolute breeding
values as well as providing reliable accuracy estimates of the breeding values. The ranking
of animals is of major importance when the goal is to select based on only one trait. How-
ever, modern breeding programs include a large variety of selection criteria which need
to be weighted according to their economic importance. For each trait the response to
selection has to be taken into account for the decision whether it should be included in the
aggregate genotype. The response to selection is largely influenced by the heritability. As
it is shown in Golan, Lander, and Rosset (2014), estimates of heritability from LMMs ap-
plied to binary data are biased and underestimate the true heritability. The bias increases
with the size of the data set and with increasing imbalance between the two outcomes in
the data. Both factors are highly relevant with respect to the Qualitas data sets. There-
fore, using LMMs for evaluation of binary or ordinal data may lead to an underestimation
of the potential response to selection and following from this a underrepresentation in the
aggregate genotype. At least a subset of the data should be fitted with a realistic model
which takes into account the binary or ordinal nature of the response variable. From the
resulting variance component estimates, a realistic heritability can be calculated leading
to better decision making in the breeding program.

Analyzing potential alternative implementations showed some promising candidates. The
package spaMM performed well for small data sets but completely failed to converge for
larger ones. We did not perform a detailed analysis of the problem and it could be worth
to further investigate the possibilities of this package. pedigreemm was our starting
point for the likelihood implementation. The package had due to the bug in the random
effect transformation major deficiencies in predicting accurate breeding values which was
reflected in the bad ranking performance. However, the fitting of GLMMs was clearly
faster compared to cowfit_glmer() . In contrast to pedigreemm , our implementation
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avoids the initial model fitting without considering the animal correlation structure, as this
caused problems in the evaluation of LMMs with single observations per animal. However,
as we have seen, the initial model fitting can significantly speed up the subsequent fitting
of the complete model. As a further improvement of cowfit_glmer () , it might be good
to avoid model fitting for LMMs with single observations but allow it for all other models.
One of the most promising implementations was MCMCglmm . The package is specifically
designed for analyzing phylogenetic models and implements the concept of the reduced
animal model in order to speed up the MCMC sampling for categorical traits (for details
see Quaas and Pollak 1980 and J. D. Hadfield 2015). brms and Stan might be generally
advantageous for complex models but for this specific task, MCMCglmm seems to have
an edge due to the above mentioned computational shortcuts. It is also worth pointing
out that both, spaMM and MCMCglmm allow for random regression, prespecified variance
components and animal models with single observations per animal. A more detailed
comparison of all implementations would be desirable for a better understanding of their
specific advantages and disadvantages.

Overall, the benchmarking provided valuable insights into the different models and a better
understanding of the major fitting functions. Still, it is important to keep in mind that
the simulations which were used are simplified and only provid an artificial representation
of real world data sets. Not all conclusions from these data sets must necessarily apply to
more complex models.

6.2 Qualitas Data

Applying common model selection strategies on a full animal model with unknown vari-
ance components has proven to be difficult due to the size of the data sets. As already
mentioned in Chapter 6.1, fast model selection remains challenging and might be a reason
why most studies in animal breeding do not report anything about how they came up with
their final set of predictors. Model selection should always be performed with the main
purpose of the model in mind, which in our case is to predict accurate breeding values.
Therefore, the parsimony of the model for easier interpretation of model parameters is
not so much of importance. Still, parsimonious models are desirable in order to decrease
the computational complexity for estimating large data sets. For the same reason, we
applied relatively low p-value thresholds in our model selection procedure. The heuristic
approach of estimating animal variance components with simple sire models or subsets
of the data was applicable for all traits and resulted in comparable variance component
estimates from both methods. The procedure can be regarded as common practice in
animal breeding (Calus, Schrooten, and Veerkamp 2014, Gilmour and Thompson 2003).
Estimated variance components led to estimates of heritability which were not always in
range of the heritability found in literature. The discrepancy might be explained by dif-
ferences between the models in use as well as the large imbalance in the distribution of
the response variables in our data set.

All three traits had a strongly imbalanced response distribution. Neither GLMMs nor
threshold models formally require a balanced response distribution. However, the distri-
bution can be so imbalanced such that the information content is too low to accurately
estimate the model parameters, which in turn leads to a higher variability in the estimates
(Salas-Eljatib et al. 2018). Less problems are expected with increasing amount of data.
Therefore, special care has to be taken if the data is subsetted for variance component
estimation.
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Despite the highly unbalanced distribution of multiple birth, our model resulted in a
high heritability estimate compared to literature. However, compared to other traits,
the heritability is still low which negatively affects the expected response to selection.
The positive correlation of the trait with milk yield further hampers the possibility to
achieve large breeding progress simultaneously in both traits. The economic importance
of the trait might be decreasing due to the widespread use of sexed semen resulting in
a lower rate of mixed sex twins and therefore also a lower prevalence of freemartinism.
Consequentially, adding the trait to the aggregate genotype should be carefully evaluated
and possible trade-offs have to be taken into account.

The calf mortality data set was by far the largest one and caused some problems with the
animal model which we were not able to resolve yet. The problems are caused by the need
to subset the Cholesky factor such that only animals with observations are included. The
subsetting is implemented in pedigreemm and requires the calculation of the numerator
relationship matrix as an intermediate step. The calculation currently returns an error
due to the size of the pedigree. Future improvements of cowfit should implement the
possibility to estimate breeding values of all animals in the pedigree, thereby avoiding the
need to subset the Cholesky factor.

The carcass conformation data set was relatively small and highly unbalanced which lim-
ited the possibilities to explore threshold models with higher complexity. A follow up
project could include data of different breeds. Based on the results of Kause et al. (2015),
different breeds may have different model parameters. Therefore, the additional observa-
tions would either have to be fitted with a separate model or the predictor breed could
possibly be included as random regression factor allowing deviations from the global pa-
rameter values depending on the breed. Slaughterhouse specific thresholds should be
further investigated if a reasonable number of observations from each slaughterhouse is
available .

6.3 Further research

All genetic evaluations presented in this thesis are pedigree based and do not make use
of genomic data. KEstimation of genomic breeding values has gained huge popularity in
recent years and might replace the pedigree approach completely within the next decades.
A elegant way to include genomic data into our current implementation would be to
estimate the additive numerator relationship matrix not via the pedigree but instead using
genomic marker data.



Chapter 7

Conclusion

The widespread practice in animal breeding of evaluating non-normal data with LMMs
violates basic model assumptions and may result in biased breeding value predictions and
biased heritability estimates. While the animal ranking performance is still relatively
good, the consequences of biased heritability estimates are far worse and may include
an underrepresentation in the aggregate genotype. GLMMs and threshold models offer
a promising solution for the genetic evaluation of non-normal response variables. Both
models are highly flexible and capable of modeling the vast majority of traits which are
relevant in animal breeding. After several decades of research and application in various
areas, they are well documented and implemented in most statistical software solutions.
Several packages in R are capable of including the important correlation structure between
animals into the model. Small data sets can rapidly be fitted using likelihood implemen-
tations whereas Bayesian implementations are particularly flexible and better capable of
estimating the uncertainty in the random effect prediction. Implementations were success-
fully tested on simulated and real world data sets. For this reason we highly recommend to
include GLMMs and threshold models into the routine breeding value estimation process.
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